Active power control of a flywheel energy storage system for wind energy applications
Active power control of a flywheel energy storage system for wind energy applications
- Author(s): G.O. Suvire and P.E. Mercado
- DOI: 10.1049/iet-rpg.2010.0155
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
- Author(s): G.O. Suvire 1 and P.E. Mercado 1
-
-
View affiliations
-
Affiliations:
1: CONICET, Instituto de Energía Eléctrica, Universidad Nacional de San Juan, San Juan, Argentina
-
Affiliations:
1: CONICET, Instituto de Energía Eléctrica, Universidad Nacional de San Juan, San Juan, Argentina
- Source:
Volume 6, Issue 1,
January 2012,
p.
9 – 16
DOI: 10.1049/iet-rpg.2010.0155 , Print ISSN 1752-1416, Online ISSN 1752-1424
The integration of wind power generation in power systems is steadily increasing around the world. This incorporation can bring problems onto the dynamics of power systems owing to the lack of controllability over the wind and the type of generation used. In this work, a distribution static synchronous compensator (DSTATCOM) coupled with a flywheel energy storage system (FESS) is used to mitigate problems introduced by wind generation in the electric system. A dynamic model of the DSTATCOM/FESS device is briefly presented and a technique to control the active power exchanged between the device and the power system is proposed. The control technique is based on fuzzy logic and a special filter. Tests of the behaviour of the device are analysed when combined with wind generation in the electric system. Results show an overall satisfactory performance of the proposed control technique along with the high effectiveness of the device used to smooth the active power fluctuations of a wind generator.
Inspec keywords: fuzzy control; controllability; static VAr compensators; power generation control; wind power plants; flywheels; power control
Other keywords:
Subjects: Power system management, operation and economics; Fuzzy control; Control of electric power systems; Control system analysis and synthesis methods; Power and energy control; Wind power plants
References
-
-
1)
- R. De Andrade , G.G. Sotelo , A.C. Ferreira . Flywheel energy storage system description and tests. IEEE Trans. Appl. Supercond. , 2154 - 2157
-
2)
- Ibrahimab, H., Ilincaa, A., Perronb, J.: `Comparison and analysis of different energy storage techniques based on their performance index', IEEE Canada Electrical Power Conf., 2007.
-
3)
- Hardan, F., Bleijs, J.A.M., Jones, R., Bromley, P., Ruddell, A.J.: `Application of a power-controlled flywheel drive for wind power conditioning in a wind/diesel power system', Proc. Ninth Int. Conf. on Electrical Machines and Drives (EMD'99), 1–3 September 1999, Canterbury, p. 65–70, IEE Publ. No. 468.
-
4)
- J.P. Barton , D.G. Infield . Energy storage and its use with intermittent renewable energy. IEEE Trans. Energy Convers. , 2 , 441 - 448
-
5)
- Neg Micon. Available at: www.neg-micon.com, accessed March 2009.
-
6)
- R. Hebner , J. Beno , A. Walls . Flywheel batteries come around again. IEEE Spectr. , 46 - 51
-
7)
- Electricity Storage Association. Available at: www.electricitystorage.org, accessed March 2009.
-
8)
- A. Nourai , B.P. Martin , D.R. Fitchett . Testing the limits [electricity storage technologies]. IEEE Power Energy Mag. , 40 - 46
-
9)
- Beacon Power. Available at: www.beaconpower.com, accessed December 2009.
-
10)
- Bleijs, J.A.M., Hardan, F., Ruddell, A.J.: `Flywheel energy storage system for wind power smoothing in weak and autonomous networks', Proc Wind Power for the 21st Century Conf., 25–27 September 2000, Kassel, Germany, p. 270–273.
-
11)
- R. Cárdenas , R. Peña , G.M. Asher , J. Clare , R. Blasco-Giménez . Control strategies for power smoothing using a flywheel driven by a sensorless vector-controlled induction machine operating in a wide speed range. IEEE Trans. Ind. Electron. , 603 - 614
-
12)
- L.H. Tsoukalas , R.E. Uhring . (1987) Fuzzy and neural approach in engineering.
-
13)
- R. Takahashi , L. Wu , T. Murata , J. Tamura . An application of flywheel energy storage system for wind energy conversion. Int. Conf. on Power Electronics Drives Systems , 932 - 937
-
14)
- H. Ibrahim , A. Ilinca , J. Perron . Energy storage systems – characteristics and comparisons. Renew. Sustain. Energy Rev. , 1221 - 1250
-
15)
- Suvire, G.O., Mercado, P.E.: `Utilización de Almacenadores de Energı́a para Mitigar los Problemas Introducidos por la Generación Eólica en el Sistema Eléctrico', XII Encuentro Regional Ibero-americano del CIGRÉ, May 2007, Foz do Iguazú, Brazil, (Energy Storage Devices to Mitigate Problems Introduced by Wind Power Generation in Power System).
-
16)
- J.M. Carrasco , L.G. Franquelo , J.T. Bialasiewicz . Power-electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans. Ind. Electron. , 1002 - 1016
-
17)
- Ecotècnia. Available at: www.ecotecnia.com, accessed March 2009.
-
18)
- Molina, M.G., Mercado, P.E.: `Multilevel control of a static synchronous compensator combined with a SMES coil for applications on primary frequency control', Proc. CBA 2004, September 2004, Gramado, Brazil.
-
19)
- Sandia National Laboratories – Energy Storage Systems. Available at: http://www.sandia.gov/ess/, accessed May 2009.
-
20)
- Bleijs, J.A.M., Hardan, F., Jones, R., Bromley, P., Ruddell, A.J.: `Conditioning of the output power of a wind turbine using a flywheel energy buffer', Proc BWEA 20 Conf., Cardiff, 2–4 September 1998, p. 139–146.
-
21)
- J.C. Smith , E.M.R. Milligan , A. DeMeo . Utility wind integration and operating impact state of the art. IEEE Trans. Power Syst. , 900 - 907
-
22)
- S.W. Mohod , M.V. Aware . Power quality issues and its mitigation technique in wind energy generation. 13th Int. Conf. on Harmon. Quality Power , 1 - 6
-
23)
- Cimuca, G., Radulescu, M.M., Saudemont, C., Robyns, B.: `Comparative study of flywheel energy storage systems associated to wind generators', Proc. Int. Conf. Appl. and Theoretical Electricity – ICATE 2004, October 2004, Romania.
-
24)
- Boutot, T., Chang, L., Luke, D.: `A low speed flywheel system for wind energy conversion', Proc. 2002 IEEE Canadian Conf. on Electrical and Computer Engineering, 2002.
-
25)
- T. Ackermann . (2005) Wind power in power systems.
-
26)
- Suvire, G.O., Mercado, P.E.: `Impacts and alternatives to increase the penetration of wind power generation in power systems', X Symp. Specialists in Electric Operational and Expansion Planning (SEPOPE), May 2006, Florianopolis, Brazil.
-
27)
- Suvire, G.O., Mercado, P.E.: `Wind farm: dynamic model and impact on a weak power system', IEEE PES T&D LATINAMERICA, August 2008, Bogotá, Colombia, p. 1–8.
-
28)
- R. Brad , J. McDowall . Commercial successes in power storage. IEEE Power Energy Mag. , 24 - 30
-
29)
- Xie, H., Mei, S., Lu, Q.: `Design of a multi-level controller for FACTS devices', Proc. Power Systems and Communication Infrastructures for the Future, September 2002, Pekín, China.
-
30)
- E. Cox . Fuzzy fundamentals. IEEE Spectr. , 58 - 61
-
31)
- G. Tao , P.V. Kokotovic . Adaptive control of systems with backlash. Automatica , 2 , 323 - 335
-
32)
- Help of Simulink/Matlab. Available at: http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/slref/backlash.html, accessed February 2010.
-
33)
- E.H. Mamdani , S. Assilian . An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. , 1 , 1 - 13
-
34)
- Flywheel Energy Systems Inc. Available at: http://blueprintenergy.com/, accessed January 2010.
-
35)
- G.O. Suvire , P.E. Mercado . DSTATCOM with flywheel energy storage system for wind energy applications: control design and simulation. Elsevier – Electr. Power Syst. Res. , 345 - 353
-
36)
- A.T. Johns , A. Ter-Gazarian , D.F. Warne . (1999) Flexible AC transmission systems (FACTS).
-
37)
- S. Samineni , B.K. Johnson , H.L. Hess , J.D. Law . Modeling and analysis of a flywheel energy storage system for voltage sag correction. IEEE Trans. Ind. Appl. , 42 - 52
-
1)
Related content
