One-power-point operation for variable speed wind/tidal stream turbines with synchronous generators

Access Full Text

One-power-point operation for variable speed wind/tidal stream turbines with synchronous generators

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Renewable Power Generation — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a new operating scheme for variable speed wind/tidal stream turbines employing synchronous generators. Current maximum power tracking schemes for variable speed wind energy conversion systems rely on periodic comparison of the output power for guiding the direction of maximum power tracking or an online algorithm which continuously provides a generator torque/speed reference corresponding to the maximum power status at different wind speed conditions. The proposed scheme utilises only one-power-point on the maximum power curve. Once the information for the maximum power status of a local wind speed is known, then the wind energy conversion system implements maximum power tracking and constant power control for different wind speed conditions using simple control. The operation strategy is applicable to tidal stream turbines. Simulation results demonstrate the concept.

Inspec keywords: wind power plants; power control; steam turbines; wind turbines; power generation control; torque control; velocity control; tidal power stations; maximum power point trackers; synchronous generators

Other keywords: maximum power tracking schemes; variable speed tidal stream turbines; one-power-point operation; constant power control; variable speed wind energy conversion systems; variable speed wind stream turbines; synchronous generators

Subjects: Control of electric power systems; Wind power plants; Power convertors and power supplies to apparatus; Velocity, acceleration and rotation control; Tidal power stations and plants; Synchronous machines; Mechanical variables control; Power and energy control; Steam power stations and plants

References

    1. 1)
      • Tuckey, A.M., Patterson, D.J., Swenson, J.: `A kinetic energy tidal generator in the northern territory-results', Proc. 23rd Int. Conf. on IECON 97, November 1997, New Orleans, LA, 2, p. 937–942.
    2. 2)
      • King, J., Tryfonas, T.: `Tidal stream power technology-state of the art', Proc. OCEANS'09, May 2009, Bremen, p. 1–8.
    3. 3)
      • A.G. Abo-Khalil , D.-C. Lee . MPPT control of wind generation systems based on estimated wind speed using SVR. IEEE Trans. Ind. Electron. , 3 , 1489 - 1490
    4. 4)
    5. 5)
      • Molina, M.G., Mercado, P.E.: `A new control strategy of variable speed wind turbine generator for three-phase grid-connected applications', Proc. IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, August 2008, Bogota, p. 1–8.
    6. 6)
      • Inoue, Y., Morimoto, S., Sanada, M.: `Control method for direct torque controlled PMSG in wind power generation system', Proc. IEMDC'09, 3–6 May 2009, Miami, FL, p. 1231–1238.
    7. 7)
      • Dai, J.Y., Xu, D.W., Wu, B.: `A novel control system for current source converter based variable speed PM wind power generators', Proc. IEEE PESC'07, June 2007, Orlando, FL, p. 1852–1857.
    8. 8)
      • Esmaili, R., Xu, L.Y.: `Sensorless control of permanent magnet generator in wind turbine application', Conf. Rec. 41st IEEE IAS Annual Meeting, October 2006, Tampa, FL, 4, p. 2070–2075.
    9. 9)
    10. 10)
      • W. Qiao , W. Zhou , J.M. Aller , R.G. Harley . Wind speed estimation based sensorless output maximization control for a wind turbine driving a DFIG. IEEE Trans. Power Electron. , 3 , 1156 - 1169
    11. 11)
      • B. Shen , B. Mwinyiwiwa , Y.Z. Zhang , B.-T. Ooi . Sensorless maximum power point tracking of wind by DFIG using rotor position phase lock loop (PLL). IEEE Trans. Power Electron. , 4 , 942 - 951
    12. 12)
      • F. Valenciaga , P.F. Puleston . High-order sliding control for a wind energy conversion system based on a permanent magnet synchronous generator. IEEE Trans. Energy Convers. , 3 , 860 - 867
    13. 13)
    14. 14)
      • L.F. Ochoa , A. Padiha-Feltrin , G.P. Harrison . Time-series-based maximization of distributed wind power generation integration. IEEE Trans. Energy Convers. , 3 , 968 - 974
    15. 15)
      • Haque, M.E., Negnevitsky, M., Muttaqi, K.M.: `A novel control strategy for a variable speed wind turbine with a permanent magnet synchronous generator', Proc. IEEE IAS'08, October 2008, Edmonton, Alta, p. 1–8.
    16. 16)
    17. 17)
      • Z. Chen , J.M. Guerrero , F. Blaabjerg . A review of the state of the art of power electronics for wind turbines. IEEE Trans. Power Electron. , 8 , 1859 - 1875
    18. 18)
      • Hai, N.T., Jang, S.-H., Park, H.-G., Lee, D.-C.: `Sensorless control of PM synchronous generators for micro wind turbines', Proc. IEEE PECon'08, December 2008, Johor Bahru, p. 936–941.
    19. 19)
      • Khan, J., Moshref, A., Bhuyan, G.: `A generic outline for dynamic modeling of ocean wave and tidal current energy conversion systems', Proc. IEEE PES'09, July 2009, Calgary, AB, p. 1–6.
    20. 20)
      • S.E. Benelghali , M.E.H. Benbouzid , J.F. Charpentier . Modeling and control of a marine current turbine driven doubly-fed induction generator. IET Renew. Power Gener. , 1 , 1 - 11
    21. 21)
    22. 22)
    23. 23)
      • B. Beltran , T. Ahmed-Ali , M.E.H. Benbouzid . High-order sliding-mode control of variable-speed wind turbines. IEEE Trans. Ind. Electron. , 9 , 3314 - 3321
    24. 24)
    25. 25)
      • Benelghali, S.E., Benbouzid, M.E.H., Ahmed-Ali, T., Charpentier, J.F.: `High-order sliding mode control of DFIG-based marine current turbine', Proc. IEEE IECON'08, November 2008, Orlando, Florida, p. 1228–1233.
    26. 26)
      • P.M. Anderson , A. Bose . Stability simulation of wind turbine systems. IEEE Trans. Power Apparatus and Syst. , 12 , 3791 - 3795
    27. 27)
      • Wang, Q.: `Maximum wind energy extraction strategies using power electronic converters', 2003, PhD, University of New Brunswick, Fredericton, NB, Canada.
    28. 28)
      • Khan, J., Bhuyan, G., Moshref, A., Morison, K., Pease, J.H., Gurney, J.: `Ocean wave and tidal current conversion technologies and their interaction with electrical networks', Proc. IEEE PES'08 General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, July 2008, Pittsburgh, PA, p. 1–8.
    29. 29)
      • Q. Wang , L.C. Chang . An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems. IEEE Trans. Power Electron. , 3 , 1242 - 1249
    30. 30)
      • B. Beltran , T. Ahmed-Ali , M. Benbouzid . Sliding mode power control of variable-speed wind energy conversion systems. IEEE Trans. Energy Convers. , 2 , 551 - 558
    31. 31)
      • Barakati, S.M., Kazerani, M., Aplevich, J.D.: `A mechanical speed-sensorless maximum power tracking control for a wind turbine system including a matrix converter', Proc. IEEE PES'08 General Meeting – Conversion and Delivery of Electrical Energy in the 21st Century, July 2008, Pittsburgh, PA, p. 1–8.
    32. 32)
      • T. Burton , D. Sharpe , N. Jenkins . (2001) Wind energy handbook.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-rpg.2009.0207
Loading

Related content

content/journals/10.1049/iet-rpg.2009.0207
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading