Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Reversible priority encoder design and implementation using quantum-dot cellular automata

Loading full text...

Full text loading...

/deliver/fulltext/iet-qtc/1/2/IET-QTC.2020.0009.html;jsessionid=4kgg7tjlus2d6.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-qtc.2020.0009&mimeType=html&fmt=ahah

References

    1. 1)
      • 15. Debnath, B., Das, J.C., De, D.: ‘Correlation and convolution for binary image filter using QCA’, Nanomater. Energy, 2016, 5, (1), pp. 6170.
    2. 2)
      • 4. Thapliyal, H., Ranganathan, N.: ‘Reversible logic based concurrently testable latches for molecular QCA’, IEEE Trans. Nanotechnol., 2010, 9, (1), pp. 6269.
    3. 3)
      • 1. Moore, G.E.: ‘Cramming more components onto integrated circuits’, Electronics, 1965, 38, (8), pp. 114117.
    4. 4)
    5. 5)
      • 28. Thapliyal, H., Ranganathan, N.: ‘Design of efficient reversible binary subtractors based on a new reversible gate’. Proc. IEEE Computer Society Annual Symp. VLSI, Washington DC, USA, May 2009, pp. 229234.
    6. 6)
      • 35. Fredkin, E., Toffoli, T.: ‘Conservative logic’, Int. J. Theor. Phys., 1982, 21, (3), pp. 219253.
    7. 7)
      • 14. Das, J.C., De, D., Mondal, S.P., et al: ‘QCA based error detection circuit for nano communication network’, IEEE Access, 2019, 7, pp. 6735567366.
    8. 8)
      • 3. Thapliyal, H., Ranganathan, N., Kotiyal, S.: ‘Design of testable reversible sequential circuits’, IEEE Trans. VLSI, 2013, 21, (7), pp. 12011209.
    9. 9)
      • 23. Mubarakali, A., Ramakrishnan, J., Mavaluru, D., et al: ‘A new efficient design for random access memory based on quantum dot cellular automata nanotechnology’, Nano Commun. Netw., 2019, 21, p. 100252.
    10. 10)
      • 47. Bilal, B., Ahmed, S., Kakkar, V.: ‘QCA based efficient Toffoli gate design and implementation for nanotechnology applications’, Int. J. Eng. Technol., 2017, 9, (3s), pp. 8492.
    11. 11)
    12. 12)
      • 34. Vankamamidi, V., Ottavi, M., Lombardi, F.: ‘A serial memory by quantum-dot cellular automata (QCA)’, IEEE Trans. Comput., 2008, 57, (5), pp. 606618.
    13. 13)
      • 42. Bella, A.B., Sundararajan, P.N.: ‘Design of reversible decoder using QCA technology’, J. Netw. Commun. Emerg. Technol., 2017, 7, (3), pp. 711.
    14. 14)
      • 31. Lisa, N.Z., Hafiz, Md., Babu, H.: ‘Minimization of a reversible quantum 2n to n BCD priority encoder’. IEEE/ACM Int. Symp. on Nanoscale Architecture (NANOARCH), Paris, July 2014, pp. 7782.
    15. 15)
      • 45. Bahar, A.N., Habib, M., Biswas, N.K.: ‘A novel presentation of Toffoli gate in quantum-dot cellular automata (QCA)’, Int. J. Comput. Appl., 2013, 82, (10), pp. 14.
    16. 16)
      • 46. Abdullah-Al-Shafi, M., Shifatul, M., Newaz, A.: ‘A review on reversible logic gates and its QCA implementation’, Int. J. Comput. Appl., 2015, 128, pp. 2734.
    17. 17)
      • 18. Zhang, Y., Xie, G., Han, J.: ‘Serial concatenated convolutional code encoder in quantum-dot cellular automata’, Nano Commun. Netw., 2019, 22, p. 100268, Article 100268.
    18. 18)
      • 24. Das, J.C., De, D.: ‘Nanocommunication network design using QCA reversible crossbar switch’, Nano Commun. Netw., 2017, 13, pp. 2033.
    19. 19)
      • 22. Das, J.C., De, D.: ‘QCA based design of polar encoder circuit for nano communication network’, Nano Commun. Netw., 2018, 18, pp. 8292.
    20. 20)
      • 11. Das, J.C., De, D.: ‘Circuit switching with quantum-dot cellular automata’, Nano Commun. Netw., 2017, 14, pp. 1628.
    21. 21)
      • 37. Liu, W., Lu, L., O'Neill, M., et al: ‘A first step toward cost functions for quantum-dot cellular automata designs’, IEEE Trans. Nanotechnol., 2014, 13, (3), pp. 476487.
    22. 22)
      • 44. Garg, U, Jain, R: ‘Design and performance analysis of reversible RSG gate using QCA’, Int. J. Comput. Appl., 2016, 139, (12), pp. 3741.
    23. 23)
      • 38. Ramesh, B., Rani, M.A.: ‘Design of an optimal decimal adder in quantum dot cellular automata’, Int. J. Nanotechnol. Appl., 2017, 11, (2), pp. 197211.
    24. 24)
      • 25. Ahmadpour, S.-S., Mosleh, M.: ‘New designs of fault-tolerant adders in quantum-dot cellular automata’, Nano Commun. Netw., 2019, 19, pp. 1025.
    25. 25)
      • 16. Das, J.C., De, D.: ‘Reversible half-adder design using quantum dot-cellular automata’, Quantum Matter, 2016, 5, (4), pp. 476491.
    26. 26)
      • 8. Das, J.C., De, D.: ‘Quantum dot cellular automata based cipher text design for nano communication’. Int. Conf. on Raddar, Communication and Computing, SKP Engg. College, Tiruvannamalai, Tamilnadu, India, December 2012, pp. 343348.
    27. 27)
      • 9. Debnath, B., Das, J.C., De, D.: ‘Design of image steganographic architecture using quantum-dot cellular automata for secure nanocommunication networks’, Nano Commun. Netw., 2018, 15, pp. 4158.
    28. 28)
      • 36. Thapliya, H., Vinod, A.P.: ‘Design of reversible sequential elements with feasibility of transistor implementation’. Int. Symp. on Circuits and Systems (ISCAS), New Orleans, LA, USA, May 2007, pp. 625628.
    29. 29)
      • 19. Kianpour, M., Sabbaghi-Nadooshan, R.: ‘A conventional design and simulation for CLB implementation of an FPGA quantum-dot cellular automata’, Microprocess. Microsyst., 2014, 38, (8), pp. 10461062.
    30. 30)
      • 40. Das, J.C., De, D.: ‘Novel design of reversible priority encoder in quantum dot cellular automata based on Toffoli gate and Feynman gate’, J. Supercomput., 75, (10), pp. 68826903.
    31. 31)
      • 43. Kianpour, M, Sabbaghi-Nadooshan, R: ‘Novel 8-bit reversible full adder/subtractor using a QCA reversible gate’, J. Comput. Electron., 2017, 16, p. 459.
    32. 32)
    33. 33)
      • 7. Seyedi, S., Navimipour, N.J.: ‘Design and evaluation of a new structure for fault-tolerance full-adder based on quantum-dot cellular automata’, Nano. Commun. Netw., 2018, 16, pp. 19.
    34. 34)
      • 26. Bennett, C.H.: ‘Logical reversibility of computation’, IBM J. Res. Dev., 1973, 17, (6), pp. 525532.
    35. 35)
      • 41. Ghosal, S., Chakraborty, K., Mandal, B.: ‘A comparative study of reversible circuits using QDCA and formulation of new universal reversible gate’, In Deyasi, A., Mukherjee, S., Debnath, P., et al (eds): ‘Computational science and engineering’, (CRC Press (Verlag), London, 2017), pp. 1925.
    36. 36)
      • 29. Bruce, W., Thomton, M.A., Shivakumaraiah, L., et al: ‘Efficient adder circuits based on a conservative reversible logic gate’. IEEE Computer Society Annual Symp. on VLSI, Pittsburgh, PA, April 2002, pp. 8388.
    37. 37)
      • 32. Huang, J., Momenzadeh, M., Schiano, L., et al: ‘Simulation-based design of modular QCA circuits’. 5th IEEE Conf. on Nanotechnology, Nagoya, Japan, 2005, pp. 533536.
    38. 38)
      • 2. Lent, C.S., Tougaw, P.D., Porod, W., et al: ‘Quantum cellular automata’, Nanotechnology, 1993, 1, (4), pp. 4957.
    39. 39)
      • 30. Ilanchezhian, P., Parvathi, R.M.S.: ‘Analysis and design of priority encoder circuit using quantum dot cellular automata’, Int. J. Eng. Res. Technol., 2013, 2, (3), pp. 15.
    40. 40)
      • 20. Abutaleb, M.M.: ‘A novel true random number generator based on QCA nanocomputing’, Nano Commun. Netw., 2018, 17, pp. 1420.
    41. 41)
      • 10. Das, J.C., De, D.: ‘Computational fidelity in reversible quantum-dot cellular automata channel routing under thermal randomness’, Nano Commun. Netw., 2018, 18, pp. 1726.
    42. 42)
      • 48. Sen, R, Das, S, Mazumder, G.G., et al: ‘Priority encoder using reversible logic gates in QCA’. 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Conf. (IEMCON), Vancouver, BC, Canada, 2017 October 3, pp. 319323.
    43. 43)
      • 6. Bhattacharya, R., Gupta, R., Basu, A., et al: ‘A fully integrated dual band CMOS power amplifier using a variable switched interstage matching network’, IETE J. Res., 60, 2014, (2), pp. 139144.
    44. 44)
      • 27. Thapliyal, H., Ranganathan, N., Kotiyal, S.: ‘Reversible logic based design and test of field coupled nano computing circuits’, in ‘Field-coupled nanocomputing’ (Springer, Berlin, Heidelberg, May 2014), pp. 133172.
    45. 45)
      • 33. Das, K., De, D.: ‘Characterisation, applicability and defect analysis for tiles nanostructure of quantum dot cellular automata’, Mol. Simul., 2011, 37, (3), pp. 210225.
    46. 46)
      • 39. Liu, W., Srivastava, S., Lu, L., et al: ‘Are QCA cryptographic circuits resistant to power analysis attack?’, IEEE Trans. Nanotechnol., 2012, 11, (6), pp. 12391251.
    47. 47)
      • 21. Cesar, T.F., Vieira, L.F., Vieira, M.A., et al: ‘Cellular automata-based byte error correction in QCA’, Nano Commun. Netw., 2020, 23, p. 100278.
    48. 48)
      • 5. Das, J.C., De, D.: ‘Reversible binary to grey and grey to binary code converter using QCA’, IETE J. Res., 2015, 61, (3), pp. 223229.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-qtc.2020.0009
Loading

Related content

content/journals/10.1049/iet-qtc.2020.0009
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address