Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Tracking cryptographic keys and encrypted data using position verification

Position verification is an emerging field of quantum cryptography. Its goal is to verify whether a distant communicating party is telling the truth about where they are. However, the problem is usually formulated in a way that the position is the only credential of that party, which cannot guarantee uniqueness. In this study, the authors show how a practically secure position verification algorithm – assuming it exists – might be used to track (i.e. repeatedly verify the position) of some unique key or cipher text. To achieve this, they rely on pre-prepared position verification data called trackers. They also propose three algorithms that implement their general tracking scheme and examine some questions related to their security. These implementations include shuffling trackers into valuable data and hiding their memory address through a random permutation; using CNOT operations to entangle valuable data and trackers; and using random qubit strings from which either trackers or secret keys can be produced at will. These methods may be used to track a diplomatic package or reveal the location of a malicious party during a denial of service attack.

References

    1. 1)
      • 6. Kent, A.: ‘Quantum tagging for tags containing secret classical data’, Phys. Rev. A, 2011, 84, (2), p. 022335.
    2. 2)
      • 23. van Dam, W.: ‘Implausible consequences of super-strong nonlocality’, Nat. Comp., 2013, 12, (1), pp. 912.
    3. 3)
      • 15. Ishizaka, S., Hiroshima, T.: ‘Asymptotic teleportation scheme as a universal programmable quantum processor’, Phys. Rev. Lett., 2008, 101, (24), p. 240501.
    4. 4)
      • 10. Speelman, F.: ‘Instantaneous non-local computation of low T-depth quantum circuits’. 11th Conf. on the Theory of Quantum Computation, Communication and Cryptography (TQC 2016), Berlin, Germany, September 2016, pp. 9:19:24.
    5. 5)
      • 1. Chandran, N., Goyal, V., Moriarty, R., et al: ‘Position based cryptography’. Advances in Cryptology – CRYPTO 2009, Santa Barbara, USA, August 2009, pp. 391407.
    6. 6)
      • 18. Christandl, M., Leditzky, F., Majenz, C., et al: ‘Asymptotic performance of port-based teleportation’. BIRS workshop, Banff, Canada, July 2019. Available at https://arxiv.org/abs/1809.10751, accessed April 2020.
    7. 7)
      • 20. Chakraborty, K., Leverrier, A.: ‘Practical position-based quantum cryptography’, Phys. Rev. A, 2015, 92, (5), p. 052304.
    8. 8)
      • 22. Popescu, S., Rohrlich, D.: ‘Quantum nonlocality as an axiom’, Found. Phys., 1994, 24, (3), pp. 379385.
    9. 9)
      • 17. Studziński, M., Strelchuk, S., Mozrzymas, M., et al: ‘Port-based teleportation in arbitrary dimension’, Sci. Rep., 2017, 10871, (7), pp. 111.
    10. 10)
      • 21. Ribeiro, J., Grosshans, F.: ‘A tight lower bound for the BB84-states quantum-position-verification protocol’. Available at https://arxiv.org/abs/1504.07171, accessed 20 April 2020.
    11. 11)
      • 11. Broadbent, A.: ‘Popescu-Rohrlich correlations imply efficient instantaneous nonlocal quantum computation’, Phys. Rev. A, 2016, 94, (2), p. 022318.
    12. 12)
      • 7. Malaney, R.: ‘The quantum car’, IEEE Wirel. Commun. Lett., 2016, 5, (6), pp. 624627.
    13. 13)
      • 4. Broadbent, A., Schaffner, C.: ‘Quantum cryptography beyond quantum key distribution’, Des. Codes Cryptogr., 2016, 382, (78), pp. 351382.
    14. 14)
      • 8. Unruh, D.: ‘Quantum position verificationin the random oracle model’. Advances in Cryptology – CRYPTO 2014, Santa Barbara, USA, August 2014, pp. 118.
    15. 15)
      • 2. Kent, A., Munro, W.J., Spiller, T.P.: ‘Quantum tagging: authenticating location via quantum information and relativistic signaling constraints’, Phys. Rev. A, 2011, 84, (1), p. 012326.
    16. 16)
      • 5. Qi, B., Siopsis, G.: ‘Loss-tolerant position-based quantum cryptography’, Phys. Rev. A, 2015, 91, (4), p. 042337.
    17. 17)
      • 25. Gyongyosi, L.: ‘Multicarrier continuous-variable quantum key distribution’, Theor. Comput., 2020, 816, pp. 6795.
    18. 18)
      • 12. Beigi, S., König, R.: ‘Simplified instantaneous non-local quantum computation with applications to position-based cryptography’, New J. Phys., 2011, 13, (9), p. 093036.
    19. 19)
      • 9. Imre, S., Gyöngyösi, L.: ‘Advanced quantum communications – an engineering approach’ (Wiley & Sons, New Jersey, USA, 2012).
    20. 20)
      • 14. Bennett, C.H., Brassard, G., Crépeau, C., et al: ‘Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels’, Phys. Rev. Lett., 1993, 70, (13), p. 1895.
    21. 21)
      • 13. Position-based quantum cryptography for multi-located prover and single verifier’. Available at http://2017.qcrypt.net/wp-content/uploads/2017/09/We478.pdf, accessed 15 January 2020.
    22. 22)
      • 3. Buhrman, H., Chandran, N., Fehr, S., et al: ‘Position-based quantum cryptography: impossibility and constructions’, SIAM J. Comput., 2013, 43, (1), pp. 150178.
    23. 23)
      • 19. Mozrzymas, M., Studziński, M., Strelchuk, S., et al: ‘Optimal port-based teleportation’, New J. Phys., 2018, 20, (5), p. 053006.
    24. 24)
      • 16. Ishizaka, S., Hiroshima, T.: ‘Quantum teleportation scheme by selecting one of multiple output ports’, Phys. Rev. A, 2009, 79, (4), p. 042306.
    25. 25)
      • 24. Galambos, M., Bacsardi, L.: ‘Using a quantum tracker to verify the geographical position of a dataset’. IAC-2019, Washington D.C., USA, October 2019, pp. 19.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-qtc.2020.0008
Loading

Related content

content/journals/10.1049/iet-qtc.2020.0008
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address