Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess General upper bound for conferencing keys in arbitrary quantum networks

Secure quantum conferencing refers to a protocol where a number of trusted users generate exactly the same secret key to confidentially broadcast private messages. By a modification of the techniques first introduced in (arXiv:1601.00966), the author derives a single-letter upper bound for the maximal rates of secure conferencing in a quantum network with arbitrary topology, where the users are allowed to perform the most powerful local operations assisted by two-way classical communications, and the quantum systems are routed according to the most efficient multipath flooding strategies. More precisely, the author bounds the ultimate rates that are achievable by single-message multiple-multicast protocols, where N senders distribute N independent secret keys, and each key is to be shared with an ensemble of M receivers.

References

    1. 1)
      • 36. Pirandola, S.: ‘End-to-end capacities of a quantum communication network', Commun. Phys., 2019, 2, p. 51.
    2. 2)
      • 8. Pirandola, S., Andersen, U.L., Banchi, L., et al: ‘Advances in quantum cryptography’, preprint arXiv:1906.01645, 2019.
    3. 3)
      • 32. Pirandola, S., Laurenza, R., Braunstein, S.L.: ‘Teleportation simulation of bosonic Gaussian channels: strong and uniform convergence', Eur. Phys. J., 2018, D 72, p. 162.
    4. 4)
      • 44. Vedral, V., Plenio, M.B.: ‘Entanglement measures and purification procedures', Phys. Rev. A, 1998, 57, p. 1619.
    5. 5)
      • 41. Braunstein, S.L., D'Ariano, G.M., Milburn, G.J., et al: ‘Universal teleportation with a twist', Phys. Rev. Lett., 2000, 84, pp. 34863489.
    6. 6)
      • 10. Vallone, G., Bacco, D., Dequal, D., et al: ‘Experimental satellite quantum communications', Phys. Rev. Lett., 2015, 115, p. 040502.
    7. 7)
      • 25. Schrijver, A.: ‘Combinatorial optimization' (Springer-Verlag, Berlin, 2003).
    8. 8)
      • 17. García-Patrón, R., Pirandola, S., Lloyd, S., et al: ‘Reverse coherent information', Phys. Rev. Lett., 2009, 102, p. 210501.
    9. 9)
      • 1. Nielsen, M.A., Chuang, I.L.: ‘Quantum computation and quantum information' (Cambridge University Press, Cambridge, 2000).
    10. 10)
      • 40. Braunstein, S.L., Kimble, H.J.: ‘Teleportation of continuous quantum variables', Phys. Rev. Lett., 1998, 80, pp. 869872.
    11. 11)
      • 2. Braunstein, S.L., van Loock, P.: ‘Quantum information with continuous variables', Rev. Mod. Phys., 2005, 77, p. 513.
    12. 12)
      • 28. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: ‘Network flows: theory, algorithms and Applications' (Prentice Hall, United States, 1993).
    13. 13)
      • 22. Dür, W., Briegel, H.-J., Cirac, J.I., et al: ‘Quantum repeaters based on entanglement purification', Phys. Rev. A, 1999, 59, p. 169.
    14. 14)
      • 45. Tanenbaum, A.S., Wetherall, D.J.: ‘Computer Networks' (Pearson, United States, 2010, 5th Edn.).
    15. 15)
      • 37. Pirandola, S.: ‘Bounds for multi-end communication over quantum networks’, Quantum Sci. Technol., 2019, 4, p. 045006.
    16. 16)
      • 49. Ottaviani, C., Lupo, C., Laurenza, R., et al: ‘Modular network for high-rate quantum conferencing', Commun. Phys., 2019, 2, p. 118.
    17. 17)
      • 16. Pirandola, S., García-Patrón, R., Braunstein, S.L., et al: ‘Direct and reverse secret-key capacities of a quantum channel', Phys. Rev. Lett., 2009, 102, p. 050503.
    18. 18)
      • 47. Christiandl, M., Ekert, A., Horodecki, M., et al: Lecture Notes in Computer Science 4392, 456–478 (2007). See also arXiv:quant-ph/0608199v3 for a more extended version.
    19. 19)
      • 46. Horodecki, K., Horodecki, M., Horodecki, P., et al: ‘Secure key from bound entanglement', Phys. Rev. Lett., 2005, 94, p. 160502.
    20. 20)
      • 43. Vedral, V., Plenio, M.B., Rippin, M.A., et al: ‘Quantifying entanglement', Phys. Rev. Lett., 1997, 78, pp. 22752279.
    21. 21)
      • 42. Vedral, V.: ‘The role of relative entropy in quantum information theory', Rev. Mod. Phys., 2002, 74, p. 197.
    22. 22)
      • 15. Pirandola, S., Laurenza, R., Ottaviani, C., et al: ‘Fundamental limits of repeaterless quantum communications', Nat. Commun., 2017, 8, p. 15043. See also arXiv:1510.08863 (2015).
    23. 23)
      • 39. Bennett, C.H., Brassard, G., Crepeau, C., et al: ‘Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels', Phys. Rev. Lett., 1993, 70, pp. 18951899.
    24. 24)
      • 48. Christiandl, M., Schuch, N., Winter, A.: ‘Entanglement of the antisymmetric state', Comm. Math. Phys., 2012, 311, pp. 397422.
    25. 25)
      • 38. Pirandola, S., Eisert, J., Weedbrook, C., et al: ‘Advances in quantum teleportation', Nature Photon., 2015, 9, pp. 641652.
    26. 26)
      • 23. Duan, L.M., Lukin, M.D., Cirac, J.I., et al: ‘Long-distance quantum communication with atomic ensembles and linear optics', Nature (London), 2001, 414, p. 413.
    27. 27)
      • 13. Pirandola, S., Braunstein, S.L.: ‘Physics: unite to build a quantum Internet', Nature, 2016, 532, pp. 169171.
    28. 28)
      • 11. Liao, S.-K., Cai, W.-Q., Handsteiner, J., et al: ‘Satellite-relayed intercontinental quantum network', Phys. Rev. Lett., 2018, 120, p. 030501.
    29. 29)
      • 6. Bennett, C.H., Brassard, G.: Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing, Bangalaore, 1984, pp. 175179.
    30. 30)
      • 35. Pirandola, S.: Capacities of repeater-assisted quantum communications, arXiv:1601.00966 (2016).
    31. 31)
      • 7. Ekert, A.K.: ‘Quantum cryptography based on Bell's theorem', Phys. Rev. Lett., 1991, 67, pp. 661663.
    32. 32)
      • 19. Minder, M., Pittaluga, M., Roberts, G.L., et al: ‘Experimental quantum key distribution beyond the repeaterless secret key capacity', Nat. Photon., 2019, 13, pp. 334338.
    33. 33)
      • 21. Briegel, H.-J., Dür, W., Cirac, J.I., et al: ‘Quantum repeaters: the role of imperfect local operations in quantum communication', Phys. Rev. Lett., 1998, 81, pp. 59325935.
    34. 34)
      • 24. Slepian, P.: ‘Mathematical foundations of network analysis (Springer-Verlag, New York, 1968).
    35. 35)
      • 26. El Gamal, A., Kim, Y.-H.: ‘Network information Theory' (Cambridge University Press, United Kingdom, 2011).
    36. 36)
      • 34. Pirandola, S., Roy Bardhan, B., Gehring, T., et al: ‘Advances in photonic quantum sensing', Nat. Photon., 2018, 12, pp. 724733.
    37. 37)
      • 50. Grasselli, F., Kampermann, H., Bruß, D.: ‘Conference key agreement with single-photon interference’, New J. Phys., 2019, 21, p. 123002.
    38. 38)
      • 29. Pirandola, S., Lupo, C.: ‘Ultimate precision of adaptive noise estimation', Phys. Rev. Lett., 2017, 118, p. 100502.
    39. 39)
      • 12. Kimble, H.J.: ‘The quantum internet', Nature, 2008, 453, pp. 10231030.
    40. 40)
      • 3. Holevo, A.: ‘Quantum systems, channels, information: a mathematical introduction' (De Gruyter, Berlin-Boston, 2012).
    41. 41)
      • 4. Weedbrook, C., Pirandola, S., García-Patrón, R., et al: ‘Gaussian quantum information', Rev. Mod. Phys., 2012, 84, p. 621.
    42. 42)
      • 31. Pirandola, S., Braunstein, S.L., Laurenza, R., et al: ‘Theory of channel simulation and bounds for private communication’Quant. Sci. Technol., 2018, 3, p. 035009.
    43. 43)
      • 27. Cover, T.M., Thomas, J.A.: ‘Elements of information Theory' (Wiley, New Jersey, 2006).
    44. 44)
      • 33. Laurenza, R., Lupo, C., Spedalieri, G., et al: ‘Channel simulation in quantum metrology', Quantum Meas. Quantum Metrol., 2018, 5, pp. 112.
    45. 45)
      • 9. Fröhlich, B., Dynes, J.F., Lucamarini, M., et al: ‘A quantum access network', Nature, 2013, 501, pp. 6972.
    46. 46)
      • 18. Lucamarini, M., Yuan, Z.L., Dynes, J.F., et al: ‘Overcoming the rate–distance limit of quantum key distribution without quantum repeaters', Nature (London), 2018, 557, pp. 400403.
    47. 47)
      • 30. Cope, T.P.W., Hetzel, L., Banchi, L., et al: ‘Simulation of non-Pauli channels', Phys. Rev. A, 2017, 96, p. 022323.
    48. 48)
      • 20. Liu, Y., Yu, Z.-W., Zhang, W., et al: ‘Experimental Twin-Field Quantum Key Distribution through Sending or Not Sending’, Phys. Rev. Lett., 2019, 123, p. 100505.
    49. 49)
      • 5. Watrous, J.: ‘The theory of quantum information' (Cambridge University Press, Cambridge, 2018).
    50. 50)
      • 14. Wehner, S., Elkouss, D., Hanson, R.: ‘Quantum internet: a vision for the road ahead', Science, 2018, 362, p. 303.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-qtc.2020.0006
Loading

Related content

content/journals/10.1049/iet-qtc.2020.0006
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address