Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Deterministic hierarchical remote state preparation of a two-qubit entangled state using Brown et al. state in a noisy environment

Quantum communication is one of the cutting-edge research areas today, where the scheme of remote state preparation (RSP) has drawn significant attention of researchers. The authors propose here a hierarchical RSP protocol for sending a two-qubit entangled state using a seven-qubit highly entangled state derived from Brown et al. state. They have also studied here the effects of two well-known noise models namely amplitude damping (AD) and phase damping (PD). An investigation on the variation of the fidelity of the state with respect to the noise operator and receiver is made. PD noise is found to affect the fidelity more than the AD noise. Furthermore, the higher power receiver obtains the state with higher fidelity than the lower power receiver under the effect of noise. To the best of their knowledge, they believe that they have achieved the highest fidelity for the higher power receiver, 0.89 in the presence of maximum AD noise and 0.72 in the presence of maximum PD noise, compared to all the previously proposed RSP protocols in noisy environments. The study of noise is described in a very pedagogical manner for a better understanding of the application of noise models to a communication protocol.

References

    1. 1)
      • 25. Adepoju, A.G., Falaye, B.J., Sun, G., et al: ‘Joint remote state preparation (JRSP) of two-qubit equatorial state in quantum noisy channels’, Phys. Lett. A, 2017, 381, pp. 581587.
    2. 2)
      • 17. Sharma, V., Shukla, C., Banerjee, S., et al: ‘Controlled bidirectional remote state preparation in noisy environment: a generalized view’, Quantum Inf. Process., 2015, 14, pp. 34413464.
    3. 3)
      • 24. Yang, R., Liu, J.: ‘Enhancing the fidelity of remote state preparation by partial measurements’, Quantum Inf. Process., 2017, 16, p. 125.
    4. 4)
      • 23. Hua, C., Li, S., Chen, Y.: ‘Fidelity of remote state preparation can be enhanced by local operation’, arXiv:1304.0283v1 [quant-ph], 2013.
    5. 5)
      • 9. Muralidharan, S., Panigrahi, P.K.: ‘Quantum-information splitting using multipartite cluster states’, Phys. Rev. A, 2008, 78, p. 062333.
    6. 6)
      • 3. Xia, Y., Song, J., Song, H.S.: ‘Multiparty remote state preparation’, J. Phys. B, 2007, 40, p. 18.
    7. 7)
      • 4. Kurucz, Z., Adam, P., Kis, Z., et al: ‘Continuous variable remote state preparation’, Phys. Rev. A, 2005, 72, p. 052315.
    8. 8)
      • 5. Ma, P.C., Chen, G.B., Li, X.W., et al: ‘Hierarchical controlled remote state preparation by using a four-qubit cluster state’, Int J. Theor. Phys., 2018, 57, pp. 17481755.
    9. 9)
      • 13. Shukla, C., Pathak, A.: ‘Hierarchical quantum communication’, Phys. Lett. A, 2013, 377, pp. 13371344.
    10. 10)
      • 22. Qian, Y., Xue, S., Jiang, M.: ‘Deterministic remote preparation of arbitrary single-qubit state via one intermediate node in noisy environment’, Phys. Lett. A, 2020, 384, p. 10.
    11. 11)
      • 1. Pati, A.K.: ‘Minimum classical bit for remote preparation and measurement of a qubit’, Phys. Rev. A, 2000, 63, p. 014302.
    12. 12)
      • 14. Nguyen, B.A., Kim, J.: ‘Joint remote state preparation’, J. Phys. B, 2008, 41, p. 095501.
    13. 13)
      • 21. Zhang, P., Ma, S., Gong, L.: ‘Deterministic remote preparation via the χ state in noisy environment’, Int. J. Theor. Phys., 2019, 58, p. 2795.
    14. 14)
      • 19. Nielson, M., Chuang, I.: ‘Quantum computing and quantum information’ (Cambridge University Press, Cambridge, UK, 2000), pp. 356385.
    15. 15)
      • 15. Cao, T.B., Nguyen, B.A.: ‘Deterministic controlled bidirectional remote state preparation’, Adv. Nat. Sci., 2014, 5, p. 015003.
    16. 16)
      • 2. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., et al: ‘Remote state preparation’, Phys. Rev. Lett., 2001, 87, p. 077902.
    17. 17)
      • 18. McMahon, D.: ‘Quantum computing explained’ (Wiley, United States of America, 2007), pp. 254271.
    18. 18)
      • 12. Leung, D.W., Shor, P.W.: ‘Oblivious remote state preparation’, Phys. Rev. Lett., 2003, 90, p. 127905.
    19. 19)
      • 10. Liu, J.M., Wang, Y.J.: ‘Remote preparation of a two-particle entangled state’, Phys. Lett. A., 2003, 316, pp. 159167.
    20. 20)
      • 7. Panigrahi, P., Karumanchi, S., Muralidharan, S.: ‘Minimal classical communication and measurement complexity for quantum information splitting of a two-qubit state’, Pramana-J. Phys., 2009, 73, p. 499.
    21. 21)
      • 20. Chen, Q., Lu, M., Hao, S.: ‘Effect of noise on joint remote preparation of an arbitrary two-qubit state via a brown state’, Ind. J. Phys., 2019, pp. 110, https://doi.org/10.1007/s12648-019-01649-7.
    22. 22)
      • 8. Muralidharan, S., Panigrahi, P.K.: ‘Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state’, Phys. Rev. A, 2008, 77, p. 032321.
    23. 23)
      • 26. Falaye, B.J., Sun, G.H., Nieto, O.C., et al: ‘JRSP of three-particle state via three tripartite GHZ class in quantum noisy channels’, Int. J. Quantum Inf., 2016, 14, p. 1650034.
    24. 24)
      • 6. Paul, N., Menon, J.V., Karumanchi, S., et al: ‘Quantum tasks using six qubit cluster states’, Quantum Inf. Process., 2011, 10, pp. 619632.
    25. 25)
      • 11. Abeyesinghe, A., Hayden, P.: ‘Generalized remote state preparation: trading cbits, qubits, and ebits in quantum communication’, Phys. Rev. A, 2003, 68, p. 062319.
    26. 26)
      • 16. Shukla, C., Thapliyal, K., Pathak, A.: ‘Hierarchical joint remote state preparation in noisy environment’, Quantum Inf. Process., 2017, 16, p. 205.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-qtc.2020.0005
Loading

Related content

content/journals/10.1049/iet-qtc.2020.0005
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address