Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Turbo-coded secure and reliable quantum teleportation

Quantum teleportation allows an unknown arbitrary quantum state to be transmitted between two separate locations. To achieve this, the system requires both classical and quantum channels, for communicating two classical bits and an entangled quantum bit from the transmitter to the receiver. It is commonly assumed that both channels are error-free, however, under realistic conditions, this is unlikely to be the case. This study proposed and investigated a secure and reliable quantum teleportation scheme when both classical and quantum channels exhibit errors. It was found that the security and reliability of the teleportation could be improved when powerful turbo codes are employed.

References

    1. 1)
      • 15. Knill, E.: ‘Quantum computing with realistically noisy devices’, Nature, 2005, 434, (7029), pp. 3944.
    2. 2)
      • 17. Li, X., Wan, N., Zhang, D.: ‘Quantum determined key distribution scheme using quantum teleportation’. 2009 WRI World Congress on Software Engineering, Xiamen, China, 2009, vol. 1, pp. 431434.
    3. 3)
      • 5. Cavaliere, F., Prati, E., Poti, L., et al: ‘Secure quantum communication technologies and systems: from labs to markets’, Quantum Rep., 2020, 2, (1), pp. 80106.
    4. 4)
      • 7. Zhou, Z., Sheng, Y., Niu, P., et al: ‘Measurement-device-independent quantum secure direct communication’, Sci. China Phys. Mech. Astron., 2020, 63, (3), p. 230362.
    5. 5)
      • 21. Babar, Z., Ng, S.X., Hanzo, L.: ‘Exit-chart-aided near-capacity quantum turbo code design’, IEEE Trans. Veh. Technol., 2015, 64, (3), pp. 866875.
    6. 6)
      • 20. Babar, Z., Botsinis, P., Alanis, D., et al: ‘The road from classical to quantum codes: a hashing bound approaching design procedure’, IEEE Access, 2015, 3, pp. 146176.
    7. 7)
      • 13. Pisenti, N., Gaebler, C.P.E., Lynn, T.W.: ‘Distinguishability of hyperentangled bell states by linear evolution and local projective measurement’, Phys. Rev. A, 2011, 84, p. 022340.
    8. 8)
      • 1. Bennett, C., Brassard, G., Crépeau, C., et al: ‘Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels’, Phys. Rev. Lett., 1993, 70, pp. 18951899.
    9. 9)
      • 6. Ghalaii, M., Ottaviani, C., Kumar, R., et al: ‘Long-distance continuous-variable quantum key distribution with quantum scissors’, IEEE J. Sel. Top. Quantum Electron., 2020, 26, (3), pp. 112.
    10. 10)
      • 12. Einstein, A., Podolsky, B., Rosen, N.: ‘Can quantum-mechanical description of physical reality be considered complete?’, Phys. Rev., 1935, 47, pp. 777780.
    11. 11)
      • 3. Hosseinidehaj, N., Babar, Z., Malaney, R., et al: ‘Satellite-based continuous-variable quantum communications: state-of-the-art and a predictive outlook’, IEEE Commun. Surv. Tutorials, 2019, 21, (1), pp. 881919.
    12. 12)
      • 14. Sklar, B.: ‘Fundamentals of turbo codes’ (Prentice Hall, USA, 2002).
    13. 13)
      • 19. Schauer, S., Suda, M.: ‘Security of entanglement swapping QKD protocols against collective attacks’. The Sixth Int. Conf. on Quantum, Nano and Micro Technologies (ICQNM), Rome, Italy, 2012.
    14. 14)
      • 11. Nielsen, M.A., Chuang, I.: ‘Quantum computation and quantum information’ (Cambridge University Press, UK, 2010).
    15. 15)
      • 8. Berrou, C., Glavieux, A., Thitimajshima, P.: ‘Near Shannon limit error-correcting coding and decoding: turbo-codes. 1’. IEEE Int. Conf. on Communications, Geneva, May 1993, vol. 2, pp. 10641070.
    16. 16)
      • 2. Pirandola, S., Eisert, J., Weedbrook, C., et al: ‘Advances in quantum teleportation’, Nat. Photonics, 2015, 9, (10), pp. 641652.
    17. 17)
      • 10. Deng, F.-G., Long, G.L., Liu, X.-S.: ‘Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block’, Phys. Rev. A, 2003, 68, p. 042317.
    18. 18)
      • 9. Poulin, D., Tillich, J., Ollivier, H.: ‘Quantum serial turbo codes’, IEEE Trans. Inf. Theory, 2009, 55, (6), pp. 27762798.
    19. 19)
      • 16. Gisin, N., Ribordy, G., Tittel, W., et al: ‘Quantum cryptography’, Rev. Mod. Phys., 2002, 74, pp. 145195.
    20. 20)
      • 4. Gyongyosi, L., Imre, S., Nguyen, H.V.: ‘A survey on quantum channel capacities’, IEEE Commun. Surv. Tutorials, 2018, 20, (2), pp. 11491205.
    21. 21)
      • 18. Naik, D.S., Peterson, C.G., White, A.G., et al: ‘Entangled state quantum cryptography: eavesdropping on the Ekert protocol’, Phys. Rev. Lett., 2000, 84, pp. 47334736.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-qtc.2020.0004
Loading

Related content

content/journals/10.1049/iet-qtc.2020.0004
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address