Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Towards a distributed quantum computing ecosystem

The Quantum Internet, by enabling quantum communications among remote quantum nodes, is a network capable of supporting functionalities with no direct counterpart in the classical world. Indeed, with the network and communications functionalities provided by the Quantum Internet, remote quantum devices can communicate and cooperate for solving challenging computational tasks by adopting a distributed computing approach. The aim of this study is to provide the reader with an overview about the main challenges and open problems arising in the design of a distributed quantum computing ecosystem. For this, the authors provide a survey, following a bottom-up approach, from a communications engineering perspective. They start by introducing the Quantum Internet as the fundamental underlying infrastructure of the distributed quantum computing ecosystem. Then they go further, by elaborating on a high-level system abstraction of the distributed quantum computing ecosystem. They describe such an abstraction through a set of logical layers. Thereby, they clarify dependencies among the aforementioned layers and, at the same time, a road-map emerges.

References

    1. 1)
      • 31. Xu, G., Xiao, K., Li, Z.P., et al: ‘Controlled secure direct communication protocol via the three-qubit partially entangled set of states’, Comput. Mater. Contin., 2019, 58, (3), pp. 809827.
    2. 2)
      • 49. Rieffel, E.G., Polak, W.H.: ‘Quantum computing: A gentle introduction’ (MIT Press, Cambridge, Massachusetts, 2011).
    3. 3)
      • 51. Linke, N.M., Maslov, D., Roetteler, M., et al: ‘Experimental comparison of two quantum computing architectures’, Proc. Natl. Acad. Sci., 2017, 114, (13), pp. 33053310.
    4. 4)
      • 36. Cacciapuoti, A.S., Caleffi, M.: ‘Capacity bounds for quantum communications through quantum trajectories’, 2019, p. arXiv:1912.08575.
    5. 5)
      • 35. Caleffi, M., Cacciapuoti, A.S.: ‘Quantum switch for the quantum internet: noiseless communications through noisy channels’, IEEE J. Sel. Areas Commun., 2020, 38, p. 1.
    6. 6)
      • 6. Gibney, E.: ‘The quantum gold rush’, Nature, 2019, 574, (7776), pp. 2224.
    7. 7)
      • 11. Arute, F., Arya, K., Babbush, R., et al: ‘Quantum supremacy using a programmable superconducting processor’, Nature, 2019, 574, (7779), pp. 505510.
    8. 8)
      • 17. Nielsen, M.A., Chuang, I.L.: ‘Quantum computation and quantum information’ (Cambridge University Press, Cambridge, England, 2010).
    9. 9)
      • 28. Aharonov, D., Ben-Or, M., Eban, E.: ‘Interactive proofs for quantum computations’. Proc. of Innovations in Computer Science, Beijing, China, 2010.
    10. 10)
      • 56. Van Meter, R., Nemoto, K., Munro, W.J., et al: ‘Distributed arithmetic on a quantum multicomputer’. 33rd Int. Symp. on Computer Architecture, Boston, Massachusetts, 2006, pp. 354365.
    11. 11)
      • 48. Zulehner, A., Paler, A., Wille, R.: ‘An efficient methodology for mapping quantum circuits to the IBM QX architectures’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2019, 38, (7), pp. 12261236.
    12. 12)
      • 26. Yimsiriwattana, A., Lomonaco, JrS.J.: ‘Distributed quantum computing: A distributed shor algorithm’. Quantum Information and Computation II, Int. Society for Optics and Photonics, Orlando, Florida, 2004, vol. 5436, pp. 360372.
    13. 13)
      • 40. Pirker, A., Dür, W.: ‘A quantum network stack and protocols for reliable entanglement-based networks’, New J. Phys., 2019, 21, (3), p. 033003.
    14. 14)
      • 16. Cacciapuoti, A.S., Caleffi, M.: ‘Toward the quantum internet: A directional-dependent noise model for quantum signal processing’. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Brighton, UK, May 2019, pp. 79787982.
    15. 15)
      • 5. Cartlidge, E.: ‘Europe's 1-billion quantum flagship announces grants’, Science, 2018, 362, (6414), p. 512.
    16. 16)
      • 12. Pednault, E., Gunnels, J., Maslov, D., et al: ‘On quantum supremacy’, IBM Res. Blog, 2019.
    17. 17)
      • 24. Wang, C., Rahman, A., Li, R.: ‘Applications and use cases for the quantum internet’. Internet Engineering Task Force, Internet-Draft draft-wang-qirg-quantum-internet-use-cases-04, Mar 2020, work in Progress.
    18. 18)
      • 8. Schuld, M., Sinayskiy, I., Petruccione, F.: ‘An introduction to quantum machine learning’, Contemp. Phys., 2015, 56, (2), pp. 172185.
    19. 19)
      • 7. Bourzac, K.: ‘4 tough chemistry problems that quantum computers will solve’, IEEE Spectr., 2017, 54, (11), pp. 79.
    20. 20)
      • 44. Gambetta, J.M., Chow, J.M., Steffen, M.: ‘Building logical qubits in a superconducting quantum computing system’, NPJ Quantum Inf., 2017, 3, (1), p. 2.
    21. 21)
      • 9. Gottesman, D., Lo, H.-K., Lutkenhaus, N., et al: ‘Security of quantum key distribution with imperfect devices’. Int. Symp. on Information Theory, Chicago, Illinois, 2004, p. 136.
    22. 22)
      • 34. Ben-Or, M., Hassidim, A.: ‘Fast quantum byzantine agreement’. Proc. of the thirty-seventh annual ACM symp. on Theory of computing, Baltimore, Maryland, 2005, pp. 481485.
    23. 23)
      • 23. Kozlowski, W., Wehner, S., Meter, R.V., et al: ‘Architectural principles for a quantum internet’. Internet Engineering Task Force, Internet-Draft draft-irtf-qirg-principles-03, Mar 2020, work in Progress.
    24. 24)
      • 13. Pednault, E., Gunnels, J.A., Nannicini, G., et al: ‘Leveraging secondary storage to simulate deep 54-qubit sycamore circuits’, 2019, p. arXiv:1910.09534.
    25. 25)
      • 30. Huang, H., Bao, W.-S., Li, T., et al: ‘Universal blind quantum computation for hybrid system’, Quantum Inf. Process., 2017, 16, (8), p. 199.
    26. 26)
      • 29. Huang, H., Zhao, Q., Ma, X., et al: ‘Experimental blind quantum computing for a classical client’, Phys. Rev. Lett., 2017, 119, (5), p. 050503.
    27. 27)
      • 55. Einstein, A., Podolsky, B., Rosen, N.: ‘Can quantum-mechanical description of physical reality Be considered complete?’, Phys. Rev., 1935, 47, pp. 777780.
    28. 28)
      • 42. Chakraborty, K., Rozpedek, F., Dahlberg, A., et al: ‘Distributed routing in a quantum internet’, 2019, p. arXiv:1907.11630.
    29. 29)
      • 59. Chou, K.S., Blumoff, J.Z., Wang, C.S., et al: ‘Deterministic teleportation of a quantum gate between two logical qubits’, Nature, 2018, 561, (7723), pp. 368373.
    30. 30)
      • 58. Van Meter, R.: ‘Architecture of a quantum multicomputer optimized for shor's factoring algorithm’, 2006, p. quant-ph/0607065.
    31. 31)
      • 14. Cao, Y., Romero, J., Olson, J.P., et al: ‘Quantum chemistry in the age of quantum computing’, Chem. Rev., 2019, 119, (19), pp. 1085610915.
    32. 32)
      • 46. Verdon, G., Arrazola, J.M., Brádler, K., et al: ‘A quantum approximate optimization algorithm for continuous problems’, pp. arXiv:1902.00409, 2019.
    33. 33)
      • 1. Caleffi, M., Cacciapuoti, A.S., Bianchi, G.: ‘Quantum internet: from communication to distributed computing!’. Proc. of the 5th ACM Int. Conf. on Nanoscale Computing and Communication, Reykjavik, Iceland, 2018, invited paper.
    34. 34)
      • 62. Quantum computing software HiQ’. Available at https://hiq.huaweicloud.com/.
    35. 35)
      • 21. Wehner, S., Elkouss, D., Hanson, R.: ‘Quantum internet: a vision for the road ahead’, Science, 2018, 362, (6412), p. eaam9288.
    36. 36)
      • 38. Caleffi, M.: ‘Optimal routing for quantum networks’, IEEE Access, 2017, 5, pp. 2229922312.
    37. 37)
      • 64. Azure quantum’. Available at https://azure.microsoft.com/it-it/services/quantum/.
    38. 38)
      • 25. Meter, R.V., Devitt, S.J.: ‘The path to scalable distributed quantum computing’, Computer, 2016, 49, (9), pp. 3142.
    39. 39)
      • 61. IBM quantum experience’. Available at https://quantum-computing.ibm.com.
    40. 40)
      • 19. Kimble, H.J.: ‘The quantum internet’, Nature, 2008, 453, (7198), pp. 10231030.
    41. 41)
      • 50. Raychev, N.: ‘Universal quantum operators’, Int. J. Sci. Eng. Res., 2015, 6, (6), pp. 13691371.
    42. 42)
      • 54. Ren, J.-G., Xu, P., Yong, H.-L., et al: ‘Ground-to-satellite quantum teleportation’, Nature, 2017, 549, (7670), p. 70.
    43. 43)
      • 41. Gyongyosi, L., Imre, S.: ‘Topology adaption for the quantum internet’, Quantum Inf. Process., 2018, 17, (11), p. 295.
    44. 44)
      • 27. Broadbent, A., Fitzsimons, J., Kashefi, E.: ‘Universal blind quantum computation’. 50th Annual IEEE Symp. on Foundations of Computer Science, Atlanta, Georgia, Oct 2009, pp. 517526.
    45. 45)
      • 43. Shi, S., Qian, C.: ‘Modeling and designing routing protocols in quantum networks’, 2019, p. arXiv:1909.09329.
    46. 46)
      • 15. Drouin, G.: ‘IBM Q's Dr.robert sutor explains the state of the quantum computing industry’, 2018.
    47. 47)
      • 18. Babar, Z., Botsinis, P., Alanis, D., et al: ‘The road from classical to quantum codes: A hashing bound approaching design procedure’, IEEE Access, 2015, 3, pp. 146176.
    48. 48)
      • 45. Tacchino, F., Macchiavello, C., Gerace, D., et al: ‘An artificial neuron implemented on an actual quantum processor’, NPJ Quantum Inf., 2019, 5, (1), pp. 18.
    49. 49)
      • 32. Chen, X., Wang, Y., Xu, G., et al: ‘Quantum network communication with a novel discrete-time quantum walk’, IEEE Access, 2019, 7, pp. 1363413642.
    50. 50)
      • 3. Cacciapuoti, A.S., Caleffi, M., Van Meter, R., et al: ‘When entanglement meets classical communications: quantum teleportation for the quantum internet’, IEEE Trans. Commun., 2020, p. 1, invited paper.
    51. 51)
      • 63. Amazon braket’. Available at https://aws.amazon.com/braket/.
    52. 52)
      • 10. Preskill, J.: ‘Quantum computing and the entanglement frontier’. 25th Solvay Conf. on Physics, Brussels, Belgium, October 2011.
    53. 53)
      • 53. Van Meter, R.: ‘Quantum networking and internetworking’, IEEE Netw., 2012, 26, (4), pp. 5964.
    54. 54)
      • 2. Cacciapuoti, A.S., Caleffi, M., Tafuri, F., et al: ‘Quantum internet: networking challenges in distributed quantum computing’, IEEE Netw., 2020, 34, (1), pp. 137143.
    55. 55)
      • 20. Pirandola, S., Braunstein, S.L.: ‘Physics: unite to build a quantum internet’, Nature, 2016, 532, (7598), pp. 169171.
    56. 56)
      • 60. Ferrari, D., Amoretti, M.: ‘Efficient and effective quantum compiling for entanglement-based machine learning on ibm q devices’, Int. J. Quantum Inf., 2018, 16, (8), p. 1840006.
    57. 57)
      • 37. Gyongyosi, L., Imre, S., Nguyen, H.V.: ‘A survey on quantum channel capacities’, IEEE Commun. Surv. Tutor., 2018, 20, (2), pp. 11491205.
    58. 58)
      • 57. Qiskit: ‘Beckend information’. Available at https://github.com/qiskit/ibmq-device-information.
    59. 59)
      • 33. Sutradhar, K., Om, H.: ‘Efficient quantum secret sharing without a trusted player’, Quantum Inf. Process., 2020, 19, (2), p. 73.
    60. 60)
      • 22. Awschalom, D., Berggren, K.K., Bernien, H., et al: ‘Development of quantum InterConnects for next-generation information technologies’, arXiv:1912.06642, 2019.
    61. 61)
      • 4. Caleffi, M., Chandra, D., Cuomo, D., et al: ‘The rise of the quantum internet’, Computer, 2020, 53, (6), pp. 6772.
    62. 62)
      • 39. Gyongyosi, L., Imre, S.: ‘Multilayer optimization for the quantum internet’, Sci. Rep., 2018, 8, (1), p. 12690.
    63. 63)
      • 47. Farhi, E., Harrow, A.W.: ‘Quantum supremacy through the quantum approximate optimization algorithm’, pp. arXiv:1602.07674, 2016.
    64. 64)
      • 52. Bennett, C.H., Brassard, G., Crépeau, C., et al: ‘Teleporting an unknown quantum state via dual classical and Einstein-podolsky-rosen channels’, Phys. Rev. Lett., 1993, 70, pp. 18951899.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-qtc.2020.0002
Loading

Related content

content/journals/10.1049/iet-qtc.2020.0002
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address