Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Estimating Hamiltonian fluctuations from quantum time averages

This study presents a framework for the enhancement of parameter estimation issues by computing the time average of several quantum observables measured under the evolution of the Hamiltonian system. These time-cum-quantum averages are expressed as a quadratic function of the orthogonal projections on the eigen subspaces of the system. Estimation of the parameters is done using the approximate time-independent perturbation theory assuming the other parameters to be small with respect to one of the parameters that is normalised to unity in the presence of noise. The study also proves that the derived expression for the mean square parameter estimation error attains the quantum limit. When the measurement noise is classical and for general positive operator-valued measure successive time, the authors derive an expression for the quantum Cramèr–Rao lower bound.

References

    1. 1)
      • 1. Paris, M.G.A.: ‘Quantum estimation for quantum technology’, Int. J. Quant. Inf., 2009, 07, (1), pp. 125137.
    2. 2)
      • 24. Buzek, V., Derka, R., Adam, G., et al: ‘Reconstruction of quantum states of spin systems: from quantum Bayesian inference to quantum tomography’, Ann. Phys., 1998, 266, pp. 2, pp. 454496.
    3. 3)
      • 21. Gautam, K., Chauhan, G., Rawat, T.K., et al: ‘Realization of quantum gates based on three-dimensional harmonic oscillator in a time-varying electromagnetic field’, Quantum Inf. Process., 2015, 14, (9), pp. 32793302.
    4. 4)
      • 18. Giovannetti, V., Lloyd, S., Maccone, L.: ‘Quantum metrology’, Phy. Rev. Lett., 2006, 96, pp. 113.
    5. 5)
      • 4. Nielsen, M.A., Chuang, I.L.: ‘Quantum computation and quantum information’ (Cambridge University Press, Cambridge, 2001), pp. 171286.
    6. 6)
      • 16. Schirmer, S.G., Oi, D.K.L.: ‘Physics-based mathematical models for quantum devices via experimental system identification’, Phys. Rev. A, 2009, 80, p. 022333.
    7. 7)
      • 20. Gautam, K., Rawat, T.K., Parthasarathy, H., et al: ‘Realization of commonly used quantum gates using perturbed harmonic oscillator’, Quantum Inf. Process., 2015, 14, (9), pp. 32573277.
    8. 8)
    9. 9)
      • 5. Geremia, J.M., Rabitz, H.: ‘Teaching lasers to optimally identify molecular Hamiltonians’, Phys. Rev. Lett., 2002, 89, p. 263902.
    10. 10)
      • 14. Leghtas, Z., Turinici, G., Rabitz, H., et al: ‘Hamiltonian identification through enhanced observability utilizing quantum control’, IEEE Trans. Autom. Control, 2012, 57.10, pp. 26792683.
    11. 11)
      • 25. Rehacek, J., Haradil, Z.: ‘Maxent assisted MaxLik quantum tomography’. AIP Conf. Proc., 2004, vol. 707, p. 480. Available at https://doi.org/10.1063/1.1751389.
    12. 12)
      • 11. Shor, P. W.: ‘Progress in quantum algorithms’, Quantum Inf. Process., 2004, 3, pp. 15.
    13. 13)
      • 13. Schirmer, S.G., Kolli, A., Oi, D.K.L.: ‘Experimental Hamiltonian identification for controlled two-level systems’, Phys. Rev. A, 2004, 69, p. 050306(R).
    14. 14)
      • 17. Baumgratz, T., Datta, A.: ‘Quantum enhanced estimation of a multidimensional field’, Phy. Rev. Lett., 2016, 116, (3), p. 030801-1 - 030801-5.
    15. 15)
      • 15. Cole, J.H., Hollenberg, L.C.L.: ‘Scanning quantum decoherence microscopy’, Phys. Rev. A, 2005, 71, p. 062312.
    16. 16)
      • 22. Brewer, J. W.: ‘Kronecker products and matrix calculus in system theory’, IEEE Trans. Circuits Syst., 1978, 25.9, pp. 772781.
    17. 17)
      • 7. Wiseman, H.M., Milburn, G.J.: ‘Quantum theory of optical feedback via homodyne detection’, Phys. Rev. Lett., 1993, 70, p. 548.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 26. Olivares, S., Paris, M.G.A.: ‘Quantum estimation via the minimum Kullback entropy principle’, Phys. Rev. A, 2007, 76, p. 042120.
    22. 22)
    23. 23)
    24. 24)
      • 2. Helstrom, C.W.: ‘Quantum detection and estimation theory’, J. Stat. Phys., 1969, 1, (2), pp. 231252.
    25. 25)
      • 23. Jaynes, E.T.: ‘Information theory and statistical mechanics’, Phys. Rev., 1957, 106, p. 620.
    26. 26)
      • 6. Verstraete, F., Doherty, A.C., Mabuchi, H.: ‘Sensitivity optimization in quantum parameter estimation’, Phys. Rev. A, 2001, 64, (032111-1 - 032111-12). quant-ph/0104116 v1, 24 April 2001.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-qtc.2020.0001
Loading

Related content

content/journals/10.1049/iet-qtc.2020.0001
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address