access icon openaccess Quantum key distribution integration with optical dense wavelength division multiplexing: a review

Quantum key distribution (QKD) can ensure information security between two remote parties. To commercialise QKD technology successfully, it should be integrated with dense wavelength division multiplexing optical transport. However, various challenges limit the QKD's performance in terms of the quantum key rate, quantum bit error rates, and maximum achievable distance. In this study, the authors discuss some of the major practical limiting factors for QKD performance such as spontaneous Raman scattering, four-wave mixing, and amplified spontaneous emission.

Inspec keywords: superradiance; error statistics; optical fibre networks; multiwave mixing; quantum cryptography; wavelength division multiplexing

Other keywords: information security; QKD performance; remote parties; quantum key rate; quantum bit error rates; optical dense wavelength division; quantum key distribution integration; maximum achievable distance; optical transport; QKD's performance; QKD technology; practical limiting factors

Subjects: Multiwave mixing; Optical phase conjugation and multiwave mixing; Multiplexing and switching in optical communication; Quantum cryptography; Optical fibre networks; Other topics in statistics; Cryptography; Data security

References

    1. 1)
      • 28. Subacius, D., Zavriyev, A., Trifonov, A.: ‘Backscattering limitation for fiber-optic quantum key distribution systems’, 2005, p. 011103.
    2. 2)
      • 57. Wegman, M.N., Carter, J.L.: ‘New hash functions and their use in authentication and set equality’, J. Comput. Syst. Sci., 1981, 22, (3), pp. 265279.
    3. 3)
      • 74. Qi, B., Zhu, W., Qian, L., et al: ‘Feasibility of quantum key distribution through a dense wavelength division multiplexing network’, New J. Phys., 2010, 12, (10), p. 103042.
    4. 4)
    5. 5)
    6. 6)
      • 69. Karinou, F., Brunner, H.H., Fung, C.-H.F., et al: ‘Toward the integration of CV quantum key distribution in deployed optical networks’, IEEE Photonics Technol. Lett., 2018, 30, (7), pp. 650653.
    7. 7)
    8. 8)
      • 62. Wang, L.-J., Chen, L.-K., Ju, L., et al: ‘Experimental multiplexing of quantum key distribution with classical optical communication’, Appl. Phys. Lett., 2015, 106, (8), p. 081108.
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 8. Rohde, H., Gottwald, E., Teixeira, A., et al: ‘Coherent ultra dense WDM technology for next generation optical metro and access networks’, J. Lightwave Technol., 2014, 32, (10), pp. 20412052.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 78. Brassard, G., Bussieres, F., Godbout, N., et al: ‘Multiuser quantum key distribution using wavelength division multiplexing’, Proc. SPIE, 2003, 5260, pp. 149154.
    17. 17)
      • 45. Kleis, S., Schaeffer, C.G.: ‘Coexistence of PSK quantum key distribution and WDM channels in optical transmission systems’. Proc. Photonic Networks; 17. ITG-Symp., Leipzig, Germany, 2016, pp. 15.
    18. 18)
      • 49. Bertran-Pardo, O., Renaudier, J., Charlet, G., et al: ‘Nonlinearity limitations when mixing 40-Gb/s coherent PDM–QPSK channels with preexisting 10-Gb/s NRZ channels’, IEEE Photonics Technol. Lett., 2008, 20, (15), pp. 13141316,10.1109/LPT.2008.926936.
    19. 19)
    20. 20)
      • 29. Mlejnek, M., Kaliteevskiy, N.A., Nolan, D.A.: ‘Reducing spontaneous Raman scattering noise in high quantum bit rate QKD systems over optical fiber’, arXiv preprint arXiv:1712.05891, 2017.
    21. 21)
    22. 22)
      • 18. Kleis, S., Steinmayer, J., Derksen, R.H., et al: ‘Experimental investigation of heterodyne quantum key distribution in the S-band or L-band embedded in a commercial C-band DWDM system’, Opt. Express, 2019, 27, (12), pp. 1654016549.
    23. 23)
    24. 24)
      • 82. Diamanti, E., Leverrier, A.: ‘Distributing secret keys with quantum continuous variables: principle, security and implementations’, Entropy, 2015, 17, (9), pp. 60726092. Available at https://www.mdpi.com/1099-4300/17/9/6072.
    25. 25)
      • 12. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al: ‘The security of practical quantum key distribution’, Rev. Mod. Phys., 2009, 81, (3), pp. 13011350.
    26. 26)
    27. 27)
      • 31. Ribeiro, L., Quirino, S., Toledo, A., et al: ‘Spontaneous Raman scattering in optical fiber: experimental measurement’. AIP Conf. Proc., São Pedro, Brazil, 2008, vol. 1055, no. 1, pp. 159162.
    28. 28)
    29. 29)
      • 5. Singh, S., Singh, A., Kaler, R.S.: ‘Performance evaluation of EDFA, RAMAN and SOA optical amplifier for WDM systems’, Optik, 2013, 124, (2), pp. 95101, doi: https://doi.org/10.1016/j.ijleo.2011.11.043.
    30. 30)
      • 1. Bennett, C.H., Brassard, G.: ‘An update on quantum cryptography’. Workshop on the Theory and Application of Cryptographic Techniques, Santa Barbara, CA, USA, 1984, pp. 475480.
    31. 31)
    32. 32)
    33. 33)
      • 44. Mao, Y., Wang, B.-X., Zhao, C., et al: ‘Integrating quantum key distribution with classical communications in backbone fiber network’, Opt. Express, 2018, 26, (5), pp. 60106020.
    34. 34)
      • 56. Nguyen, T.M.T., Sfaxi, M.A., Ghernaouti-Hélie, S.: ‘802.11 i encryption key distribution using quantum cryptography’, J. Netw., 2006, 1, (5), pp. 920.
    35. 35)
      • 77. Cheng, G., Guo, B., Zhang, C., et al: ‘Wavelength division multiplexing quantum key distribution network using a modified plug-and-play system’, Opt. Quantum Electron., 2015, 47, (7), pp. 18091817.
    36. 36)
      • 11. ETSI: ‘Quantum key distribution (QKD) components and internal interfaces’, ETSI, France, 2018, vol. 2.1.1.
    37. 37)
    38. 38)
    39. 39)
      • 64. Shimizu, K., Honjo, T., Fujiwara, M., et al: ‘Performance of long-distance quantum key distribution over 90-km optical links installed in a field environment of Tokyo metropolitan area’, J. Lightwave Technol., 2014, 32, (1), pp. 141151.
    40. 40)
      • 26. Razavi, M.: ‘An introduction to quantum communications networks’ (Morgan & Claypool Publishers, USA, 2018). Available at http://dx.doi.org/10.1088/978-1-6817-4653-1.
    41. 41)
    42. 42)
    43. 43)
      • 35. Ahmed, J., Hussain, A., Siyal, M.Y., et al: ‘Parametric analysis of four wave mixing in DWDM systems’, Optik, 2014, 125, (7), pp. 18531859, doi: https://doi.org/10.1016/j.ijleo.2013.09.029.
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
      • 38. Sun, Y., Lu, Y., Niu, J., et al: ‘Reduction of FWM noise in WDM-based QKD systems using interleaved and unequally spaced channels’, Chin. Opt. Lett., 2016, 14, (6), pp. 060602060607.
    50. 50)
    51. 51)
      • 68. Dynes, J.F., Tam, W.W.-S., Plews, A., et al: ‘Ultra-high bandwidth quantum secured data transmission’, Sci. Rep., 2016, 6, p. 35149.
    52. 52)
    53. 53)
    54. 54)
      • 63. Patel, K.A., Dynes, J.F., Choi, I., et al: ‘Coexistence of high-bit-rate quantum key distribution and data on optical fiber’, Phys. Rev. X, 2012, 2, (4), p. 041010.
    55. 55)
    56. 56)
    57. 57)
    58. 58)
    59. 59)
      • 14. Aleksic, S., Hipp, F., Winkler, D., et al: ‘Perspectives and limitations of QKD integration in metropolitan area networks’, Opt. Express, 2015, 23, (8), pp. 1035910373.
    60. 60)
      • 59. Jain, N., Stiller, B., Khan, I., et al: ‘Attacks on practical quantum key distribution systems (and how to prevent them)’, Contemp. Phys., 2016, 57, (3), pp. 366387.
    61. 61)
      • 25. Desurvire, E.: ‘E.-D. F. amplifiers’ (J. Wiley Sons, Inc., New York, 1994).
    62. 62)
    63. 63)
    64. 64)
      • 61. Patel, K.A., Dynes, J.F., Lucamarini, M., et al: ‘Quantum key distribution for 10 Gb/s dense wavelength division multiplexing networks’, Appl. Phys. Lett., 2014, 104, (5), p. 051123.
    65. 65)
    66. 66)
      • 34. Peters, N.A., Toliver, P., Chapuran, T.E., et al: ‘Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments’, New J. Phys., 2009, 11, (4), p. 045012.
    67. 67)
    68. 68)
    69. 69)
    70. 70)
      • 33. Chapuran, T.E., Toliver, P., Peters, N.A., et al: ‘Optical networking for quantum key distribution and quantum communications’, New J. Phys., 2009, 11, (10), p. 105001.
    71. 71)
    72. 72)
    73. 73)
    74. 74)
      • 81. Boaron, A., Boso, G., Rusca, D., et al: ‘Secure quantum key distribution over 421 km of optical fiber’, Phys. Rev. Lett., 2018, 121, (19), p. 190502.
    75. 75)
    76. 76)
    77. 77)
      • 80. Zhang, Q., Xu, F., Chen, Y.-A., et al: ‘Large scale quantum key distribution: challenges and solutions’, Opt. Express, 2018, 26, (18), pp. 2426024273.
    78. 78)
      • 7. Antil, R., Pinki, S.B., Beniwal, S.: ‘An overview of DWDM technology & network’, Int. J. Sci. Technol. Res., 2012, 1, (11), pp. 4346.
    79. 79)
      • 39. Runser, R.J., Chapuran, T., Toliver, P., et al: ‘Progress toward quantum communications networks: opportunities and challenges’. Optoelectronic Integrated Circuits IX Int., San Jose, CA, USA, 2007, vol. 6476, p. 64760I.
    80. 80)
    81. 81)
      • 27. Collins, M., Clark, A., Xiong, C., et al: ‘Random number generation from spontaneous Raman scattering’, Appl. Phys. Lett., 2015, 107, (14), p. 141112.
    82. 82)
    83. 83)
    84. 84)
      • 71. Sasaki, M., Fujiwara, M., Ishizuka, H., et al: ‘Field test of quantum key distribution in the Tokyo QKD network’, Opt. Exp., 2011, 19, (11), pp. 1038710409.
    85. 85)
    86. 86)
      • 52. Pattaranantakul, M., Janthong, A., Sanguannam, K., et al: ‘Secure and efficient key management technique in quantum cryptography network’. 2012 Fourth Int. Conf. on Ubiquitous and Future Networks (ICUFN), Phuket, Thailand, 2012, pp. 280285.
    87. 87)
      • 20. Salvail, L., Peev, M., Diamanti, E., et al: ‘Security of trusted repeater quantum key distribution networks’, J. Comput. Secur., 2010, 18, (1), pp. 6187.
    88. 88)
    89. 89)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-qtc.2019.0005
Loading

Related content

content/journals/10.1049/iet-qtc.2019.0005
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading