access icon free Meeting IEC and ER G4/5 harmonic standards in nine-level cascaded H-bridge inverters using an improved SHM-PAM scheme

This study introduces a new switching scheme for nine-level cascaded H-bridge (CHB) inverter to comply with the harmonic standards (IEC 61000-2-12, IEC 61000-3-6, and ER G4/5) using an improved selective harmonic minimisation pulse amplitude modulation (SHM-PAM) scheme. In this scheme, the optimised switching instances and variable DC-link voltages are determined by solving some new constraints based cost functions using particle swarm optimisation (PSO) technique. The theoretical analysis and optimisation results of the proposed modulation scheme are validated through MATLAB simulations and experimentally on a laboratory-scale prototype of CHB inverter. The proposed modulation scheme utilises a minimal number of switching instances in a fundamental period and optimisation variables in the problem formulation in comparison to conventional SHE-PWM and SHE-PAM schemes. The key performance of the proposed scheme in terms of harmonic and loss analysis is evaluated over the wide range of the power factors and modulation index. Finally, the suitability of the proposed scheme is tested for the closed-loop speed control of a 5 hp, 415 V three-phase induction motor.

Inspec keywords: IEC standards; power system harmonics; invertors; power factor; power engineering computing; velocity control; closed loop systems; induction motors; bridge circuits; pulse amplitude modulation; particle swarm optimisation; harmonics suppression

Other keywords: improved SHM-PAM scheme; voltage 415.0 V; IEC 61000-3-6 harmonic standards; modulation index; closed-loop speed control; power factors; improved selective harmonic minimisation pulse amplitude modulation scheme; MATLAB simulations; variable DC-link voltages; three-phase induction motor; switching instances; harmonic loss analysis; particle swarm optimisation; PSO technique; power 5.0 hp; IEC 61000-2-12 harmonic standards; ER G4-5 harmonic standards; nine-level cascaded H-bridge inverter; CHB inverter

Subjects: Power electronics, supply and supervisory circuits; Optimisation techniques; Asynchronous machines; Velocity, acceleration and rotation control; Power engineering computing; Control of electric power systems; Optimisation techniques; DC-AC power convertors (invertors); Power supply quality and harmonics

References

    1. 1)
      • 24. Perez-Basante, A., Ceballos, S., Konstantinou, G., et al: ‘(2n + 1) selective harmonic elimination-PWM for modular multilevel converters: A generalized formulation and a circulating current control method’, IEEE Trans. Power Electron., 2018, 33, (1), pp. 802818.
    2. 2)
      • 3. Abu-Rub, H., Malinowski, M., Al-Haddad, K.: ‘Power electronics for renewable energy systems, transportation and industrial applications’ (John Wiley & Sons, Hoboken, NJ, USA, 2014).
    3. 3)
      • 33. Kundu, S., Banerjee, S.: ‘An improved SHM-PWM scheme for three-phase seven-level CHB inverter to improve power quality by fulfilling CIGRE WG 36-05 and EN 50160 and sharing equal power between the H-bridge cells’, Int. Trans. Electr. Energy Syst., 2019, 29, (9), p. e12040.
    4. 4)
      • 39. Giroux, P.: ‘Loss calculation in a 3-phase 3-level inverter using SimPowerSystems and simscape’, 2020. Available at https://www.mathworks.com/matlabcentral/fileexchange/36158-loss-calculation-in-a-3-phase-3-level-inverter-using-simpowersystems-and-simscape.
    5. 5)
      • 2. Malinowski, M., Gopakumar, K., Rodríguez, J., et al: ‘A survey on cascaded multilevel inverters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 21972206.
    6. 6)
      • 6. Wang, H., Liu, S.: ‘Harmonic interaction analysis of delta-connected cascaded H-bridge-based shunt active power filter’, IEEE J. Emerg. Sel. Top. Power Electron., 2020, 8, (3), pp. 24452460.
    7. 7)
      • 40. Rana, N., Banerjee, S.: ‘Development of an improved input-parallel output-series buck-boost converter and its closed-loop control’, IEEE Trans. Ind. Electron., 2020, 67, (8), pp. 64286438.
    8. 8)
      • 23. Dahidah, M.S.A., Konstantinou, G.S., Agelidis, V.G.: ‘Selective harmonic elimination pulse-width modulation seven-level cascaded H-bridge converter with optimised DC voltage levels’, IET Power Electron., 2012, 5, (6), pp. 852862.
    9. 9)
      • 17. Kundu, S., Bhowmick, S., Banerjee, S.: ‘Improvement of power utilisation capability for a three-phase seven-level CHB inverter using an improved selective harmonic elimination–PWM scheme by sharing a desired proportion of power among the H-bridge cells’, IET Power Electron., 2019, 12, (12), pp. 32423253.
    10. 10)
      • 10. IEC 61000-3-6:1996: ‘Assessment of emission limits for distorting loads in MV and HV power systems’, 1996.
    11. 11)
      • 16. Kundu, S., Burman, A.D., Giri, S., et al: ‘Comparative study between different optimisation techniques for finding precise switching angle for SHE-PWM of three-phase seven-level cascaded H-bridge inverter’, IET Power Electron., 2018, 11, (3), pp. 600609.
    12. 12)
      • 14. Edpuganti, A., Rathore, A.K.: ‘A survey of low switching frequency modulation techniques for medium-voltage multilevel converters’, IEEE Trans. Ind. Appl., 2015, 51, (5), pp. 42124228.
    13. 13)
      • 1. Rodríguez, J., Lai, J.-S., Peng, F.Z.: ‘Multilevel inverters: a survey of topologies, controls, and applications’, IEEE Trans. Ind. Electron., 2002, 49, (4), pp. 724738.
    14. 14)
      • 5. Neyshabouri, Y., Iman-Eini, H., Miranbeigi, M.: ‘State feedback control strategy and voltage balancing scheme for a transformer-less static synchronous compensator based on cascaded h-bridge converter’, IET Power Electron., 2015, 8, (6), pp. 906917.
    15. 15)
      • 19. Etesami, M., Vilathgamuwa, D.M., Ghasemi, N., et al: ‘Enhanced meta-heuristic methods for selective harmonic elimination technique’, IEEE Trans. Ind. Inf., 2018, 14, (12), pp. 52105220.
    16. 16)
      • 32. Sharifzadeh, M., Vahedi, H., Portillo, R., et al: ‘Hybrid SHM-SHE pulse-amplitude modulation for high-power four-leg inverter’, IEEE Trans. Ind. Electron., 2016, 63, (11), pp. 72347242.
    17. 17)
      • 34. Kundu, S., Banerjee, S., Bhowmick, S.: ‘Improved SHM-PAM-based five-level CHB inverter to fulfil NRS 048-2:2003 grid code and to apply as shunt active power filter with tuned proportional-resonant controller for improving power quality’, IET Power Electron., 2020, 13, (11), pp. 23502360.
    18. 18)
      • 4. Iman-Eini, H., Bacha, S., Frey, D.: ‘Improved control algorithm for grid-connected cascaded H-bridge photovoltaic inverters under asymmetric operating conditions’, IET Power Electron., 2018, 11, (3), pp. 407415.
    19. 19)
      • 7. Singh, B., Ambrish, C., Kamal, A.: ‘Power quality: problems and mitigation techniques’ (John Wiley & Sons, UK, 2015).
    20. 20)
      • 12. Holmes, D.G., Lipo, T.A.: ‘Pulse width modulation for power converters principles and practice’ (IEEE Press, Piscataway, NJ, USA, 2003).
    21. 21)
      • 21. Haghdar, K.: ‘Optimal DC source influence on selective harmonic elimination in multilevel inverters using teaching-learning based optimization’, IEEE Trans. Ind. Electron., 2020, 67, (2), pp. 942949.
    22. 22)
      • 20. Haghdar, K., Shayanfar, H.A.: ‘Selective harmonic elimination with optimal DC sources in multilevel inverters using generalized pattern search’, IEEE Trans. Ind. Inf., 2018, 14, (7), pp. 31243131.
    23. 23)
      • 11. Electricity Association Engineering Recommendation G5/4: ‘Planning levels for harmonic voltage distortion and the connection of non-linear equipment to transmission systems and distribution networks in the United Kingdom’, 2005.
    24. 24)
      • 37. Moeini, A., Iman-Eini, H., Najjar, M.: ‘Non-equal DC link voltages in a cascaded H-bridge with a selective harmonic mitigation-PWM technique based on the fundamental switching frequency’, J. Power Electron., 2017, 17, (1), pp. 106114.
    25. 25)
      • 13. Dahidah, M., Konstantinou, G., Agelidis, V.: ‘A review of multilevel selective harmonic elimination PWM: formulations, solving algorithms, implementation, and applications’, IEEE Trans. Power Electron., 2015, 30, (8), pp. 40914106.
    26. 26)
      • 9. IEC 61000-2-12:2003: ‘Compatibility levels for low-frequency conducted disturbances and signaling in public medium-voltage power supply systems’, 2003.
    27. 27)
      • 38. ‘5SNA 0750G650300 ABB HiPak, IGBT Module’, Datasheet (2014), ABB Group, Switzerland. Available at http://www.abb.com.
    28. 28)
      • 22. Najjar, M., Iman-Eini, H., Moeini, A.: ‘Increasing the range of modulation indices with the polarities of cells and switching constraint reliefs for the selective harmonic elimination pulse width modulation technique’, J. Power Electron., 2017, 17, (4), pp. 933941.
    29. 29)
      • 35. Marzoughi, A., Imaneini, H., Moeini, A.: ‘An optimal selective harmonic mitigation technique for high power converters’, Int. J. Electr. Power Energy Syst., 2013, 49, pp. 3439.
    30. 30)
    31. 31)
      • 25. Kamani, P.L., Mulla, M.A.: ‘Simplified SHE pulse-amplitude modulation for multilevel inverters’, IET Power Electron., 2018, 11, (14), pp. 21912197.
    32. 32)
      • 26. Kamani, P.L., Mulla, M.A.: ‘Middle-level SHE pulse-amplitude modulation for cascaded multilevel inverters’, IEEE Trans. Ind. Electron., 2018, 65, (3), pp. 28282833.
    33. 33)
      • 30. Najjar, M., Iman-Eini, H., Moeini, A., et al: ‘Improving the solution range in selective harmonic mitigation pulse width modulation technique for cascaded multilevel converters’, J. Power Electron., 2017, 17, (5), pp. 11861194.
    34. 34)
      • 15. Kumle, A.N., Fathi, S.H., Jabbarvaziri, F., et al: ‘Application of memetic algorithm for selective harmonic elimination in multi-level inverters’, IET Power Electron., 2015, 8, (9), pp. 17331739.
    35. 35)
      • 8. CIGRE JWG C4.07: ‘Power quality indices and objectives’, 2004.
    36. 36)
      • 31. Moeini, A., Iman-Eini, H., Bakhshizadeh, M.: ‘Selective harmonic mitigation-pulse-width modulation technique with variable DC-link voltages in single and three-phase cascaded H-bridge inverters’, IET Power Electron., 2014, 7, (4), pp. 924932.
    37. 37)
      • 36. Najjar, M., Moeini, A., Bakhshizadeh, M.K., et al: ‘Optimal selective harmonic mitigation technique on variable DC link cascaded H-bridge converter to meet power quality standards’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (3), pp. 11071116.
    38. 38)
      • 28. Franquelo, L.G., Nápoles, J., Guisado, R.C.P., et al: ‘A flexible selective harmonic mitigation technique to meet grid codes in three-level PWM’, IEEE Trans. Ind. Electron., 2007, 54, (6), pp. 30223029.
    39. 39)
      • 29. Nápoles, J., Leon, J.I., Portillo, R., et al: ‘Selective harmonic mitigation technique for high-power converters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 23152323.
    40. 40)
      • 27. Buccella, C., Cimoroni, M.G., Tinari, M., et al: ‘A new pulse active width modulation (PAWM) for multilevel converters’, IEEE Trans. Power Electron., 2019, 34, (8), pp. 72217229.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2020.0884
Loading

Related content

content/journals/10.1049/iet-pel.2020.0884
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading