Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design and parameter configuration of modular multilevel dynamic DC transformer for renewable energy sources

DC transformer plays a significant role in DC distributed network. This study proposes a modular multilevel dynamic DC transformer (MMDT), which can realise smooth control of transformer ratio, multi-level voltage conversion, and reliable fault isolation without high-frequency transformers and extra loss. The inner circuit, formed by the capacitors, not only realises the energy exchange between different sides but also provides the capability of fault isolation. In the proposed MMDT, the voltage transforming is realised by switching to different numbers of control units (CUs) on each side. To realise multi-level voltage transforming, the multi-port MMDT is developed. Furthermore, this study offers analyses of the current and voltage characteristics in steady-state and investigates the parameter design method in detail. Finally, the simulation and experiment tests are conducted to verify the feasibility and superiority of the proposed MMDT.

References

    1. 1)
      • 21. Lin, W., Wen, J., Cheng, S.: ‘Multiport DC–DC autotransformer for interconnecting multiple high-voltage DC systems at low cost’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 66486660.
    2. 2)
      • 23. Khan, A., Chan, Y., Yaqoob, M., et al: ‘A multistructure multimode three-phase dual-active-bridge converter targeting wide-range high-efficiency performance’, IEEE Trans. Power Electron., 2021, 36, (3), pp. 30783098.
    3. 3)
      • 10. Chen, W., Zhu, X., Yao, L., et al: ‘An interline DC power-flow controller (IDCPFC) for multi-terminal HVDC system’, IEEE Trans. Power Deliv., 2015, 30, (4), pp. 20272036.
    4. 4)
      • 11. Jovcic, D., Zhang, L.: ‘LCL DC-DC converter for DC grids’, IEEE Trans. Power Deliv., 2013, 28, (4), pp. 20712079.
    5. 5)
      • 7. Adam, G., Gowaid, I., Finney, S., et al: ‘Review of DC–DC converters for multi-terminal HVDC trans-mission networks’, IET Power Electron., 2016, 9, (2), pp. 281296.
    6. 6)
      • 16. Parastar, A., Kang, Y., Seok, J.: ‘Multilevel modular DC/DC power converter for high-voltage DC-connected offshore wind energy applications’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 28792890.
    7. 7)
      • 17. Gowaid, I., Adam, G., Massoud, A., et al: ‘Quasi two-level operation of modular multilevel converter for use in a high-power DC transformer with DC fault isolation capability’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 108123.
    8. 8)
      • 15. Parastar, A., Seok, J.: ‘High-gain resonant switched-capacitor cell-based DC/DC converter for offshore wind energy systems’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 644656.
    9. 9)
      • 22. Lin, W.: ‘DC–DC autotransformer with bi-directional DC fault isolating capability’, IEEE Trans. Power Electron., 2016, 31, (8), pp. 54005410.
    10. 10)
      • 8. Chen, W., Huang, A., Li, C., et al: Analysis and comparison of medium voltage high power DC/DC converters for offshore wind energy systems’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 20142023.
    11. 11)
      • 14. Jovcic, D.: ‘Step-up DC–DC converter for megawatt size applications’, IET Power Electron., 2009, 2, (6), pp. 675685.
    12. 12)
      • 20. Onur, D., Ugur, A., Kemal, K.: ‘Novel three-level T-type isolated bidirectional DC-DC converter’, IET Power Electron., 2019, 12, (1), pp. 6171.
    13. 13)
      • 6. Gowaid, I., Adam, G., Massoud, A., et al: ‘Quasi two-level operation of modular multilevel converter for use in a high-power DC transformer with DC fault isolation capability’, IEEE Trans. Power Electron., 2015, 6, (5), pp. 108123.
    14. 14)
      • 24. Xueyin, Z., Yonghai, X., Yunbo, L., et al: ‘Hybrid-frequency cascaded full-bridge solid-state transformer’, IEEE Access, 2019, 7, pp. 2211822132.
    15. 15)
      • 4. Peiwen, H., Ayan, M., Gary, C., et al: ‘High-power-density high-efficiency LLC converter with an adjustable-leakage-inductance planar transformer for data centers’, IET Power Electron., 2019, 12, (2), pp. 303310.
    16. 16)
      • 3. Shuvangkar, S., Eklas, H., Tanveerul, I., et al: ‘Design and hardware implementation considerations of modified multilevel cascaded H-bridge inverter for photovoltaic system’, IEEE Access, 2019, 7, pp. 1650416524.
    17. 17)
      • 2. Rabiul, M., Ashib, M., Danny, S., et al: ‘A new magnetic-linked converter for grid integration of offshore wind turbines through MVDC transmission’, IEEE Trans. Appl. Supercond., 2019, 29, (2), pp. 15.
    18. 18)
      • 18. Gowaid, I., Adam, G., Ahmed, S., et al: ‘Analysis and design of a modular multilevel converter with trapezoidal modulation for medium and high voltage DC-DC transformers’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 54395457.
    19. 19)
      • 9. Adam, G., Gowaid, I., Finney, S., et al: ‘Review of DC-DC converters for multi-terminal HVDC trans-mission networks’, IET Power Electron., 2016, 9, (2), pp. 281296.
    20. 20)
      • 19. Xing, Z., Ruan, X., You, H., et al: ‘Soft-switching operation of isolated modular DC/DC converters for application in HVDC grids’, IEEE Trans. Power Electron., 2015, 31, (4), pp. 27532766.
    21. 21)
      • 13. Ortiz, G., Uemura, H., Bortis, D., et al: ‘Modeling of soft-switching losses of IGBTs in high-power high-efficiency dual-active-bridge DC/DC converters’, IEEE Trans. Electron. Devices, 2013, 60, (2), pp. 587597.
    22. 22)
      • 5. Kenzelmann, S., Rufer, A., Dujic, D., et al: ‘Isolated DC/DC structure based on modular multilevel converter’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 8998.
    23. 23)
      • 1. Saeed, P., Farzad, S., Hossein, S., et al: ‘High step-up DC-DC converter with coupled inductor suitable for renewable applications’, IET Power Electron., 2019, 12, (1), pp. 92101.
    24. 24)
      • 12. Jovcic, D.: ‘Bidirectional high power DC transformer’, IEEE Trans. Power Deliv., 2009, 24, (4), pp. 22762283.
    25. 25)
      • 25. Jones, P., Davidson, C.: ‘Calculation of power losses for MMC-based VSC HVDC stations’. 2013 15th European Conf. on Power Electronics and Applications(EPE), Lille, France, September 2013, pp. 110.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2020.0837
Loading

Related content

content/journals/10.1049/iet-pel.2020.0837
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address