access icon free ANN design of multiple open-switch fault diagnosis for three-phase PWM converters

In this paper, Artificial Neural Networks (ANNs) for diagnosing multiple open-switch faults in three-phase PWM (Pulse Width Modulation) converters are designed. For single and double open-switch faults in the converters, there are 21 types of fault modes, causing distorted phase currents. Since these abnormal currents can induce secondary faults in peripherals, the open-fault diagnosis is essentially required. In this paper, a two-step technique based on ANNs is utilized for the diagnosis of the multiple open-switch fault. First, dc and harmonic components of the currents are extracted by using an ADALINE (Adaptive Linear Neuron). In the first step, the ANN categorizes fault modes into six sectors by using dc components in the three-phase plane. In the second step, the ANN localizes fault modes by using dc components and the ratio of dq axes currents THDs (Total Harmonics Distortions) in each sector. Especially, both switches open-faults in the same legs are localised by counting the sampled zero current of the fault currents. The proposed two-step technique allows a simple design of the ANNs for the diagnosis, and a short execution time about 22 s. Simulations and experiments for a 3.7 kW three-phase PWM converter confirmed the validity of the proposed diagnostic method.

Inspec keywords: neural nets; power engineering computing; harmonic distortion; switching convertors; fault diagnosis; PWM invertors; PWM power convertors

Other keywords: fault currents; switches; total harmonics distortions; three-phase pulse-width modulation converters; multiple open-switch fault diagnosis; stationary d–q axes currents; multiple open-switch faults; sampled zero currents; three-phase PWM converter; fault modes; DC components; abnormal currents; harmonic components; harmonics components; two-step technique; open-fault diagnosis; ANN design; time 22.0 mus; currents THDs; three-phase PWM converters; secondary faults

Subjects: Power engineering computing; DC-AC power convertors (invertors); Neural nets

References

    1. 1)
      • 21. Khomfoi, S., Tolbert, L.M.: ‘Fault diagnosis and reconfiguration for multilevel inverter drive using AI-based techniques’, IEEE Trans. Ind. Electron., 2007, 54, (6), pp. 29542968.
    2. 2)
      • 10. Wu, F., Zhao, J., Liu, Y.: ‘Symmetry-analysis-based diagnosis method with correlation coefficients for open-circuit fault in inverter’, Electron. Lett., 2015, 51, (21), pp. 16881690.
    3. 3)
      • 4. Peuget, R., Courtine, S., Rognon, J.-P.: ‘Fault detection and isolation on a PWM inverter by knowledge-based model’, IEEE Trans. Ind. Appl., 1998, 34, (6), pp. 13181326.
    4. 4)
      • 15. Kou, L., Liu, C., Cai, G., et al: ‘Fault diagnosis for open-circuit faults in NPC inverter based on knowledge-driven and data-driven approaches’, IET Power Electron., 2020, 13, (6), pp. 12361245.
    5. 5)
      • 3. Lu, B., Sharma, S.K.: ‘A literature review of IGBT fault diagnostic and protection methods for power inverters’, IEEE Trans. Ind. Appl., 2009, 45, (5), pp. 17701777.
    6. 6)
      • 7. Rothenhagen, K., Fuchs, F.W.: ‘Performance of diagnosis methods for IGBT open circuit faults in three phase voltage source inverters for AC variable speed drives’. 2005 European Conf. on Power Electronics and Applications, Dresden, 2005, pp. 110.
    7. 7)
      • 27. Widrow, B., Lehr, M.A.: ‘30 years of adaptive neural networks: perceptron, madaline, and backpropagation’, Proc. IEEE, 1990, 78, (9), pp. 14151442.
    8. 8)
      • 14. An, Q.T., Sun, L., Sun, L.Z.: ‘Hardware-circuit-based diagnosis method for open-switch faults in inverters’, Electron. Lett., 2013, 49, (17), pp. 10891091.
    9. 9)
      • 25. Khomfoi, S., Tolbert, L.M.: ‘Fault diagnostic system for a multilevel inverter using a neural network’, IEEE Trans. Power Electron., 2007, 22, (3), pp. 10621069.
    10. 10)
      • 26. Sobanski, P., Kaminski, M., ‘Application of artificial neural networks for transistor open-circuit fault diagnosis in three-phase rectifiers’, IET Power Electron., 2019, 12, (9), pp. 21892200.
    11. 11)
      • 5. Mendes, A.M.S., Cardoso, A.J.M.: ‘Voltage source inverter fault diagnosis in variable speed AC drives, by the average current Park's vector approach’. IEEE Int. Electric Machines and Drives Conf. IEMDC'99, Seattle, WA, USA, 1999, pp. 704706.
    12. 12)
      • 6. Mendes, A.M.S., Cardoso, A.J.M.: ‘Fault diagnosis in a rectifier–inverter system used in variable speed AC drives, by the average current Park's vector approach’. European Power Electronics Conf., Lausanne, Switzerland, 1999, pp. 19.
    13. 13)
      • 13. Jlassi, I., Estima, J.O., El Khil, S.K., et al: ‘A robust observer-based method for IGBTs and current sensors fault diagnosis in voltage-source inverters of PMSM drives’, IEEE Trans. Ind. Appl., 2017, 53, (3), pp. 28942905.
    14. 14)
      • 2. Fuchs, F.W.: ‘Some diagnosis methods for voltage source inverters in variable speed drives with induction machines – a survey’. IECON'03. 29th Annual Conf. of the IEEE Industrial Electronic Society, Roanoke, VA, USA, 2003, vol. 2, pp. 13781385.
    15. 15)
      • 1. Kim, S.: ‘Electric motor control DC, AC, and BLDC motors’ (Elsevier Inc., UK, 2017).
    16. 16)
      • 28. Winter, W.: ‘MADALINE RULE II: a training algorithm for neural networks’. IEEE 1988 Int. Conf. on Neural Networks, San Diego, CA, USA, 1988, vol. 1, pp. 401408.
    17. 17)
      • 11. Lee, J., Ha, J.: ‘On-line switch-open fault detection of PMSM using artificial neural network’. 2019 10th Int. Conf. on Power Electron. and ECCE Asia, Busan, Korea (South), 2019, pp. 16.
    18. 18)
      • 12. An, Q., Sun, L., Sun, L.: ‘Current residual vector-based open-switch fault diagnosis of inverters in PMSM drive systems’, IEEE Trans. Power Electron., 2015, 30, (5), pp. 28142827.
    19. 19)
      • 16. Im, W., Kim, J., Lee, D., et al: ‘Diagnosis and fault-tolerant control of three-phase AC–DC PWM converter systems’, IEEE Trans. Ind. Appl., 2013, 49, (4), pp. 15391547.
    20. 20)
      • 9. Espinoza-Trejo, D.R., Campos-Delgado, D.U., Bossio, G., et al: ‘Fault diagnosis scheme for open-circuit faults in field-oriented control induction motor drives’, IET Power Electron., 2013, 6, (5), pp. 869877.
    21. 21)
      • 19. Wu, F., Zhao, J., Liu, Y., et al: ‘Primary source inductive energy analysis based real-time multiple open-circuit fault diagnosis in two-level three-phase PWM boost rectifier’, IEEE Trans. Power Electron., 2018, 33, (4), pp. 34113423.
    22. 22)
      • 22. Wang, T., Zhang, G., Zhao, J., et al: ‘Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems’, IEEE Trans. Power Syst., 2015, 30, (3), pp. 11821194.
    23. 23)
      • 23. Yan, H., Xu, Y., Cai, F., et al: ‘PWM-VSI Fault diagnosis for a PMSM drive based on the fuzzy logic approach’, IEEE Trans. Power Electron., 2019, 34, (1), pp. 759768.
    24. 24)
      • 20. Delpha, C., Chen, H., Diallo, D.: ‘SVM based diagnosis of inverter fed induction machine drive: a new challenge’. IECON 2012 – 38th Annual Conf. on IEEE Industrial Electronics Society, Montreal, QC, 2012, pp. 39313936.
    25. 25)
      • 17. Shi, T., He, Y., Deng, F., et al: ‘Online diagnostic method of open-switch faults in PWM voltage source rectifier based on instantaneous AC current distortion’, IET Electr. Power Appl., 2018, 12, (3), pp. 447454.
    26. 26)
      • 24. Diallo, D., Benbouzid, M.E.H., Hamad, D., et al: ‘Fault detection and diagnosis in an induction machine drive: a pattern recognition approach based on concordia stator mean current vector’, IEEE Trans. Energy Convers., 2005, 20, (3), pp. 512519.
    27. 27)
      • 8. Kral, C., Kafka, K.: ‘Power electronics monitoring for a controlled voltage source inverter drive with induction machines’. 2000 IEEE 31st Annual Power Electronics Specialists Conf., Galway, Ireland, 2000, pp. 213217.
    28. 28)
      • 18. Wu, F., Zhao, J.: ‘Current similarity analysis-based open-circuit fault diagnosis for two-level three-phase PWM rectifier’, IEEE Trans. Power Electron., 2017, 32, (5), pp. 39353945.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2020.0795
Loading

Related content

content/journals/10.1049/iet-pel.2020.0795
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading