access icon free Battery voltage equalisation using single-phase cascaded H-bridge converters

This research demonstrates modular battery storage systems' voltage balancing using cascaded H-bridge (CHB) converters. The main principle is to maintain AC-side high-quality power absorption or injection, while on the DC-side independent battery units' voltages get balanced. The CHB converter operates in inversion or rectification modes to discharge the storage system to an AC load/grid, or to charge it from an AC source, respectively. To achieve this goal, several challenges as high-differential mode , and dealing with semiconductors voltage drop also arise which should get tackled through feasible controller design. Model predictive control (MPC), as a flexible technique capable of multi-parameter controlling, is used to achieve the beforementioned system objectives in a simple, efficient, and scalable manner. The proposed MPC-based algorithm is an AC current controller, which handles DC-side voltage equalisation and introduces adjacent CHB voltage levels to reduce and performs switches voltage loss modelling all in a single control block. An additional linear controller based on multi-carrier pulse width modulation is also implemented for comparison with the MPC-based design. Experimental prototyping and simulation results validate the feasibility of this approach.

Inspec keywords: power system control; secondary cells; predictive control; PWM invertors; electric current control; DC-AC power convertors; switching convertors; control system synthesis; PWM power convertors

Other keywords: AC-side high-quality power absorption; single control block; single-phase cascaded H-bridge converters; AC current controller; CHB converter; linear controller; storage system; battery voltage equalisation; MPC-based design; DC-side independent battery units; AC source; switches voltage loss; DC-side voltage equalisation; multiparameter controlling; feasible controller design; model predictive control; MPC-based algorithm; modular battery storage systems; adjacent CHB voltage levels; high-differential mode; semiconductors voltage drop

Subjects: Control system analysis and synthesis methods; Current control; Optimal control; Control of electric power systems; Power system control; DC-AC power convertors (invertors); Secondary cells

References

    1. 1)
      • 16. Palanivel, P., Dash, S.S.: ‘Analysis of THD and output voltage performance for cascaded multilevel inverter using carrier pulse width modulation techniques’, IET Power Electron., 2011, 4, (8), pp. 951958.
    2. 2)
      • 5. Hamada, S., Eto, T., Sunagawa, Y.: ‘Battery module, battery pack, and method for producing the battery module’. Google Patents, 2011. US Patent 7,875,375.
    3. 3)
      • 37. Gupta, K.K., Bhatnagar, P.: ‘Multilevel inverters: conventional and emerging topologies and their control’ (Academic Press, UK, 2017).
    4. 4)
      • 23. Mahmoudian, M., Gitizadeh, M., Rajaei, A.H., et al: ‘Common mode voltage suppression in three-phase voltage source inverters with dynamic load’, IET Power Electron., 2019, 12, (12), pp. 31413148.
    5. 5)
      • 7. Daowd, M., Omar, N., van den Bossche, P., et al: ‘A review of passive and active battery balancing based on MATLAB/simulink’, Int. Rev. Electr. Eng., 2011, 6, (7), pp. 29742989.
    6. 6)
      • 21. Vasiladiotis, M., Rufer, A.: ‘Analysis and control of modular multilevel converters with integrated battery energy storage’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 163175.
    7. 7)
      • 14. Maharjan, L., Inoue, S., Akagi, H., et al: ‘State-of-charge (SOC)-balancing control of a battery energy storage system based on a cascade PWM converter’, IEEE Trans. Power Electron., 2009, 24, (6), pp. 16281636.
    8. 8)
      • 19. Quraan, M., Yeo, T., Tricoli, P.: ‘Design and control of modular multilevel converters for battery electric vehicles’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 507517.
    9. 9)
      • 27. Karamanakos, P., Geyer, T., Oikonomou, N., et al: ‘Direct model predictive control: a review of strategies that achieve long prediction intervals for power electronics’, IEEE Ind. Electron. Mag., 2014, 8, (1), pp. 3243.
    10. 10)
      • 30. Graovac, D., Purschel, M., Kiep, A.: ‘MOSFET Power Losses Calculation Using the Data- Sheet Parameters’ [Application Note]. (Infineon), 2006.
    11. 11)
      • 28. Nikolian, A., Firouz, Y., Gopalakrishnan, R., et al: ‘Lithium ion batteries-development of advanced electrical equivalent circuit models for nickel manganese cobalt lithium-ion’, Energies, 2016, 9, (5), pp. 123.
    12. 12)
      • 25. Yanshu, J., Dianguo, X., Xiyou, C.: ‘A novel inverter output dv/dt suppression filter’. IECON'03. 29th Annu. Conf. IEEE Ind. Electron. Soc. (IEEE Cat. No.03CH37468). (IEEE), Roanoke, VA, USA, 2003, pp. 29012905.
    13. 13)
      • 8. Ooi, C.A., Rogers, D., Jenkins, N.: ‘Balancing control for grid-scale battery energy storage system’, Proc. Inst. Civ. Eng. - Energy, 2015, 168, (2), pp. 145157.
    14. 14)
      • 4. Offer, G.J., Yufit, V., Howey, D.A., et al: ‘Module design and fault diagnosis in electric vehicle batteries’, J. Power Sources, 2012, 206, pp. 383392.
    15. 15)
      • 34. Siami, M., Khaburi, D.A., Rodriguez, J.: ‘Torque ripple reduction of predictive torque control for pmsm drives with parameter mismatch’, IEEE Trans. Power Electron., 2016, 32, (9), pp. 71607168.
    16. 16)
      • 26. Kouro, S., Cortes, P., Vargas, R., et al: ‘Model predictive control–A simple and powerful method to control power converters’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 18261838.
    17. 17)
      • 29. Young, H.A., Perez, M.A., Rodriguez, J.: ‘Analysis of finite-control-Set model predictive current control with model parameter mismatch in a three-phase inverter’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 31003170.
    18. 18)
      • 31. Pirooz, A., Firouz, Y., Van Mierlo, J.: ‘State of charge equalization of battery modules using single-phase cascaded multilevel converters’. 2019 IEEE 9th Int. Conf. Power Energy Syst. (IEEE), Perth, WA, Australia, 2019, pp. 16.
    19. 19)
      • 15. Gholizad, A., Farsadi, M.: ‘A novel state-of-charge balancing method using improved staircase modulation of multilevel inverters’, IEEE Trans. Ind. Electron., 2016, 63, (10), pp. 61076114.
    20. 20)
      • 33. Zhang, X., Zhang, L., Zhang, Y.: ‘Model predictive current control for pmsm drives with parameter robustness improvement’, IEEE Trans. Power. Electron., 2018, 34, (2), pp. 16451657.
    21. 21)
      • 22. Tolbert, L.M., Peng, F.Z., Habetler, T.G.: ‘Multilevel converters for large electric drives’, IEEE Trans. Ind. Appl., 1999, 35, (1), pp. 3644.
    22. 22)
      • 1. Luo, X., Wang, J., Dooner, M., et al: ‘Overview of current development in electrical energy storage technologies and the application potential in power system operation’, Appl. Energy, 2015, 137, pp. 511536.
    23. 23)
      • 3. Warner, J.: ‘The handbook of lithium-ion battery pack design: chemistry, components, types and terminology’ (Elsevier, USA, 2015).
    24. 24)
      • 12. Daowd, M., Omar, N., Van Den Bossche, P., et al: ‘Passive and active battery balancing comparison based on MATLAB simulation’. 2011 IEEE Veh. Power Propuls. Conf. (IEEE), Chicago, IL, USA, 2011, pp. 17.
    25. 25)
      • 2. Tsiropoulos, I., Tarvydas, D., Lebedeva, N.: ‘Li-ion batteries for mobility and stationary storage applications’ (Publications Office of the European Union, Luxembourg, 2018). EUR 29440 EN. Available from: https://ec.europa.eu/jrc.
    26. 26)
      • 18. Akagi, H.: ‘Classification, terminology, and application of the modular multilevel cascade converter (MMCC)’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 31193130.
    27. 27)
      • 17. Jamaludin, J., Rahim, N.A., Ping, H.W.: ‘Multilevel voltage source inverter with optimised usage of bidirectional switches’, IET Power Electron., 2015, 8, (3), pp. 378390.
    28. 28)
      • 10. Lelie, M., Braun, T., Knips, M., et al: ‘Battery management system hardware concepts: an overview’, Appl. Sci., 2018, 8, (4), p. 534.
    29. 29)
      • 32. Chen, Z., Qiu, J., Jin, M.: ‘Adaptive finite-control-set model predictive current control for IPMSM drives with inductance variation’, IET Electr. Power Appl., 2017, 11, (5), pp. 874884.
    30. 30)
      • 24. ‘Low-voltage Power MOSFET switching behavior and performance evaluation in motor control application topologies’ [Application Note]. (STMicroelectronics, 2018).
    31. 31)
      • 6. Rahimi-Eichi, H., Ojha, U., Baronti, F., et al: ‘Battery management system: an overview of its application in the smart grid and electric vehicles’, IEEE Ind. Electron. Mag., 2013, 7, (2), pp. 416.
    32. 32)
      • 9. Qi, J., Dah-Chuan Lu, D.: ‘Review of battery cell balancing techniques’. 2014 Australas. Univ. Power Eng. Conf. AUPEC 2014 - Proc. (ACPE), Perth, WA, Australia, 2014, pp. 16.
    33. 33)
      • 13. Omariba, Z.B., Zhang, L., Sun, D.: ‘Review of battery cell balancing methodologies for optimizing battery pack performance in electric vehicles’, IEEE Access, 2019, 7, pp. 129335129352.
    34. 34)
      • 35. Rodriguez, J., Cortes, P.: ‘Predictive control of power converters and electrical drives’, vol. 40 (John Wiley & Sons, UK, 2012).
    35. 35)
      • 36. Wu, B., Narimani, M.: ‘High-power converters and ac drives’ (John Wiley & Sons, USA, 2017).
    36. 36)
      • 20. Muhammed Alaas, Z.: ‘Cascaded converters for integration and management of grid level energy storage systems’ [PhD Thesis]. Wayne State University, 2017.
    37. 37)
      • 11. Barsukov, Y.: ‘Battery cell balancing: what to balance and how’ (Texas Instruments, USA, 2005).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2020.0522
Loading

Related content

content/journals/10.1049/iet-pel.2020.0522
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading