Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design of class-EM amplifier with consideration of parasitic non-linear capacitances and on-state resistance

In this study, the design of the class-E power amplifier is presented. In this design, the effects of on-state resistance and non-linear parasitic capacitances of the transistors are investigated. Two metal oxide semiconductor field-effect transistors (MOSFETs) of IRFZ24N and IRF510 with different drain-source resistances are used in the presented circuits. In the given design, the values of the operational frequency and duty ratio are 3.5 MHz and 0.5, respectively. This study shows the importance of considering non-linear parasitic elements of MOSFET, especially drain-source resistance in the designing of the class-EM power amplifiers. It is shown that the class-EM power amplifier with high MOSFET drain-source resistance needs high DC input voltage for both the primary and auxiliary circuits. In the previous works, non-linear on-state resistance and non-linear drain-source and gate-drain capacitances have not been included at the same time in the analyses. Two class-EM amplifiers contain IRF510 and IRFZ24N are designed, simulated, and measured. The efficiency equal to 96.6% with 11.851 W output power at 3.5 MHz and the efficiency equal to 88.4% with 12.361 W output power are achieved for presented class-EM amplifiers contain IRFZ24N and IRF510, respectively.

References

    1. 1)
      • 11. Evzelman, M., Peretz, M.M.: ‘Optimal design of a class-E resonant driver’, IET Power Electron., 2015, 8, (8), pp. 15521557.
    2. 2)
      • 20. Abbasi, H., Hayati, M.: ‘Design of class-EM power amplifier at any Dc voltage source considering nonlinear capacitances’, Int. J. Electron., 2019, 106, (4), pp. 491506.
    3. 3)
      • 4. Mugisho, M.S., Makarov, D.G., Rassokhina, Y.V., et al: ‘Generalized class-E power amplifier with shunt capacitance and shunt filter’, IEEE Trans. Microw. Theory Tech., 2019, 67, (8), pp. 34643474.
    4. 4)
      • 2. Ablay, G.: ‘Robust integral controllers for high-order class-D power amplifiers’, IET Power Electron., 2017, 11, (3), pp. 593599.
    5. 5)
      • 22. International Rectifier: ‘HEXFET power MOSFET’, IRFZ24N datasheet, 2004.
    6. 6)
      • 10. Tu, S.: ‘Analysis and design of power-controllable CMOS class E RF-tuned power amplifiers’, IET Power Electron., 2012, 5, (4), pp. 428434.
    7. 7)
      • 9. Luo, W., Ogi, Y., Ebihara, F., et al: ‘Design of load-independent class-E inverter with MOSFET gate-to-drain and drain-to-source parasitic capacitances’, Nonlinear Theory Appl., 2020, 11, (2), pp. 267277.
    8. 8)
      • 16. Miyahara, R., Sekiya, H.: ‘Design of class-E M power amplifier with one input signal’. 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 2009.
    9. 9)
      • 24. Vishay Siliconix: ‘Power MOSFET’, IRF510 datasheet, March 2011.
    10. 10)
      • 8. Liu, S., Liu, M., Yang, S., et al: ‘A novel design methodology for high-efficiency current-mode and voltage-mode class-E power amplifiers in wireless power transfer systems’, IEEE Trans. Power Electron., 2016, 32, (6), pp. 45144523.
    11. 11)
      • 21. IRFZ24N Spice Model: ‘International rectifier’. Available at http://www.infineon.com (30 October 2017).
    12. 12)
      • 15. Wei, X., Nagashima, T., Kuroiwa, S., et al: ‘Design of symmetric class-EM power amplifier’. IECON 2011 37th Annual Conf. of the IEEE Industrial Electronics Society, Melbourne, VA, Australia, 2011.
    13. 13)
      • 1. Grebennikov, A., Sokal, N.O., Franco, M.J.: ‘Switchmode RF and microwave power amplifiers’ (Academic Press, USA, 2012).
    14. 14)
      • 19. Mugisho, M.S., Thian, M., Grebennikov, A.: ‘Analysis and design of a high-efficiency class-E M power amplifier’. 2019 IEEE Radio and Wireless Symp. (RWS), Orlando, FL, USA, 2019.
    15. 15)
      • 7. Grebennikov, A.: ‘High-efficiency class-E power amplifier with shunt capacitance and shunt filter’, IEEE Trans. Circuits Syst. I, Regul.Pap., 2016, 63, (1), pp. 1222.
    16. 16)
      • 3. Jee, S., Moon, J., Kim, J., et al: ‘Switching behavior of class-E power amplifier and its operation above maximum frequency’, IEEE Trans. Microw. Theory Tech., 2011, 60, (1), pp. 8998.
    17. 17)
      • 6. Chen, P., He, S.: ‘Investigation of inverse class-E power amplifier at sub-nominal condition for any duty ratio’, IEEE Trans. Circuits Syst. I, Regul.Pap., 2015, 62, (4), pp. 10151024.
    18. 18)
      • 14. Miyahara, R., Sekiya, H., Kazimierczuk, M.K.: ‘Novel design procedure for class-EM power amplifiers’, IEEE Trans. Microw. Theory Tech., 2010, 58, (12), pp. 36073616.
    19. 19)
      • 13. Telegdy, A., Molnar, B., Sokal, N.O.: ‘Class-EM switching-mode tuned power amplifier-high efficiency with slow-switching transistor’, IEEE Trans. Microw. Theory Tech., 2003, 51, (6), pp. 16621676.
    20. 20)
      • 5. Lotfi, A., Medi, A.: ‘Design, analysis and implementation of class-E ZCS/ZCDS power amplifier for any duty ratio with nonlinear output parasitic capacitance’, Analog Integr. Circuits Signal Process., 2016, 89, (1), pp. 185195.
    21. 21)
      • 18. Wei, X., Nagashima, T., Kazimierczuk, M.K., et al: ‘Analysis and design of class-EM power amplifier’, IEEE Trans. Circuits Syst. I, Regul.Pap., 2014, 61, (4), pp. 976986.
    22. 22)
      • 23. IRF510 spice model: ‘Vishay intertechnology’. Available at http://www.vishay.com (30 October 2017).
    23. 23)
      • 17. Inaba, T., Koizumi, H.: ‘Class-DE M tuned power amplifier’, IEEE Trans. Power Electron., 2018, 34, (1), pp. 403415.
    24. 24)
      • 12. Li, Y.-F.: ‘Active zero voltage switching tracking controller design for class E inverter to counteract the resonant components shifting’, IET Power Electron., 2015, 8, (10), pp. 20162025.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2020.0253
Loading

Related content

content/journals/10.1049/iet-pel.2020.0253
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address