access icon free Non-linear deadbeat direct torque and flux control for switched reluctance motor

In this study, the non-linear deadbeat direct torque and flux control (N-DB-DTFC) scheme is proposed for switched reluctance motor (SRM) to achieve torque and flux precise control. For torque control part, the Fourier series form of inductance is used to establish the non-linear torque model of SRM. As for the flux control, stator flux-oriented is adopted to achieve the flux control and simplified calculation in N-DB-DTFC. In addition, the synthetic voltage vectors are applied by pulse-width modulation. In order to assess the performance of N-DB-DTFC, the comparison of torque ripple is analysed among the traditional deadbeat controls in the simulation and experiment. Although, for the torque transient response, three deadbeat controls show the strong robustness and adaptability. In the results, the proposed N-DB-DTFC strategy shows better reflection in terms of lower torque ripple. Moreover, the results of simulation and experiment are based on a three-phase 12/8-poles SRM.

Inspec keywords: torque control; reluctance motors; stators; machine control; nonlinear control systems; magnetic flux

Other keywords: torque transient response; stator flux-oriented; lower torque ripple; N-DB-DTFC strategy; nonlinear torque model; nonlinear deadbeat direct torque; torque control part; flux control; switched reluctance motor; flux precise control

Subjects: Nonlinear control systems; Synchronous machines; Control of electric power systems; Mechanical variables control

References

    1. 1)
      • 17. Xu, W., Lorenz, R.D.: ‘Dynamic loss minimization using improved deadbeat-direct torque and flux control for interior permanent-magnet synchronous machines’, IEEE Trans. Ind. Appl., 2014, 50, (2), pp. 10531065.
    2. 2)
      • 10. Shinohara, A., Inoue, Y., Morimoto, S., et al: ‘Maximum torque per ampere control in stator flux linkage synchronous frame for DTC-based PMSM drives without using q-axis inductance’, IEEE Trans. Ind. Appl., 2017, 53, (4), pp. 36633671.
    3. 3)
      • 5. Moron, C., Garcia, A., Tremps, E., et al: ‘Torque control of switched reluctance motors’, IEEE Trans. Mag., 2012, 48, (4), pp. 16611664.
    4. 4)
      • 18. Lee, J.-H., Kim, C.-G., Youn, M.-J.: ‘A dead-beat type digital controller for the direct torque control of an induction motor’, IEEE Trans. Power Electron., 2002, 17, (5), pp. 739746.
    5. 5)
      • 30. Cai, J., Deng, Z.: ‘Initial rotor position estimation and sensorless control of SRM based on coordinate transformation’, IEEE Trans. Instrum. Meas., 2015, 64, (4), pp. 10041018.
    6. 6)
      • 9. Payami, S., Behera, R.K.: ‘An improved DTC technique for low-speed operation of a five-phase induction motor’, IEEE Trans. Ind. Electron., 2017, 64, (5), pp. 35133523.
    7. 7)
      • 28. Song, S., Zhang, M., Ge, L.: ‘A new decoupled analytical modeling method for switched reluctance machine’, IEEE Trans Mag., 2015, 51, (3), pp. 14, Art no. 8100504.
    8. 8)
      • 24. Saur, M., Lehner, B., Hentschel, F., et al: ‘DB-DTFC as loss minimizing control for synchronous reluctance drives’. 2015 41st Annual Conf. of the IEEE Ind. Electron. Society (IECON), Yokohama, Japan, 2015, pp. 001412001417.
    9. 9)
      • 25. Nakao, N., Akatsu, K.: ‘Vector control specialized for switched reluctance motor drives’. 2014 Int. Conf. on Elect. Mach. (ICEM), Berlin, 2014, pp. 943949.
    10. 10)
      • 15. Yan, N., Cao, X., Deng, Z.: ‘Direct torque control for switched reluctance motor to obtain high torque-ampere ratio’, IEEE Trans. Ind. Electron., 2019, 66, (7), pp. 51445152.
    11. 11)
      • 20. Vafaie, M.H., Mirzaeian Dehkordi, B., Moallem, P., et al: ‘A new predictive direct torque control method for improving both steady-state and transient-state operations of the PMSM’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 37383753.
    12. 12)
      • 19. Wang, K., Lorenz, R.D., Baloch, N.A.: ‘Improvement of back-EMF self-sensing for induction machines when using deadbeat-direct torque and flux control’, IEEE Trans. Ind. Appl., 2017, 53, (5), pp. 45694578.
    13. 13)
      • 13. Yao, S., Zhang, W.: ‘A simple strategy for parameters identification of SRM direct instantaneous torque control’, IEEE Trans. Power Electron., 2018, 33, (4), pp. 36223630.
    14. 14)
      • 7. Choi, C., Kim, S., Kim, Y., et al: ‘A new torque control method of a switched reluctance motor using a torque-sharing function’, IEEE Trans. Mag., 2002, 38, (5), pp. 32883290.
    15. 15)
      • 26. Kuai, S., Zhang, H., Xia, X., et al: ‘Unipolar sinusoidal excited switched reluctance motor control based on voltage space vector’, IET Electric Power Appl., 2019, 13, (5), pp. 670675.
    16. 16)
      • 2. Chiba, A., Kiyota, K., Hoshi, N., et al: ‘Development of a rare-earth-free SR motor with high torque density for hybrid vehicles’, IEEE Trans. Energy Conver., 2015, 30, (1), pp. 175182.
    17. 17)
      • 1. Valdivia, V., Todd, R., Bryan, F.J., et al: ‘Behavioral modeling of a switched reluctance generator for aircraft power systems’, IEEE Trans. Ind. Electron., 2014, 61, (6), pp. 26902699.
    18. 18)
      • 6. Rodrigues, M., Costa Branco, P.J., Suemitsu, W.: ‘Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors’, IEEE Trans. Ind. Electron., 2001, 48, (3), pp. 711715.
    19. 19)
      • 12. Inderka, R.B., De Doncker, R.W.A.A.: ‘DITC-direct instantaneous torque control of switched reluctance drives’, IEEE Trans. Ind. Appl., 2003, 39, (4), pp. 10461051.
    20. 20)
      • 21. Vafaie, M.H., Dehkordi, B.M., Moallem, P., et al: ‘Improving the steady-state and transient-state performances of PMSM through an advanced deadbeat direct torque and flux control system’, IEEE Trans. Power Electron., 2017, 32, (4), pp. 29642975.
    21. 21)
      • 16. Lee, J.S., Choi, C., Seok, J., et al: ‘Deadbeat-direct torque and flux control of interior permanent magnet synchronous machines with discrete time stator current and stator flux linkage observer’, IEEE Trans. Ind. Appl., 2011, 47, (4), pp. 17491758.
    22. 22)
      • 27. Khan, Y.A., Verma, V.: ‘Novel speed estimation technique for vector-controlled switched reluctance motor drive’, IET Electric Power Appl., 2019, 13, (8), pp. 11931203.
    23. 23)
      • 3. Bostanci, E., Moallem, M., Parsapour, A., et al: ‘Opportunities and challenges of switched reluctance motor drives for electric propulsion: a comparative study’, IEEE Trans. Transport. Electrific., 2017, 3, (1), pp. 5875.
    24. 24)
      • 8. Ye, J., Bilgin, B., Emadi, A.: ‘An offline torque sharing function for torque ripple reduction in switched reluctance motor drives’, IEEE Trans. Energy Conver., 2015, 30, (2), pp. 726735.
    25. 25)
      • 22. Wang, Y., Tobayashi, S., Lorenz, R.D.: ‘A low-switching-frequency flux observer and torque model of deadbeat–direct torque and flux control on induction machine drives’, IEEE Trans. Ind. Appl., 2015, 51, (3), pp. 22552267.
    26. 26)
      • 4. Kiyota, K., Kakishima, T., Chiba, A.: ‘Comparison of test result and design stage prediction of switched reluctance motor competitive with 60-kW rare-earth PM motor’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 57125721.
    27. 27)
      • 14. Inoue, T., Inoue, Y., Morimoto, S., et al: ‘Maximum torque per ampere control of a direct torque-controlled PMSM in a stator flux linkage synchronous frame’, IEEE Trans. Ind. Appl., 2016, 52, (3), pp. 23602367.
    28. 28)
      • 29. Ding, W., Song, K.: ‘Position sensorless control of switched reluctance motors using reference and virtual flux linkage with one-phase current sensor in medium and high speed’, IEEE Trans. Ind. Electron., 2020, 67, (4), pp. 25952606.
    29. 29)
      • 11. Xu, A., Shang, C., Chen, J., et al: ‘A new control method based on DTC and MPC to reduce torque ripple in SRM’, IEEE Access, 2019, 7, pp. 6858468593.
    30. 30)
      • 23. Saur, M., Gaona Erazo, D.E., Zdravkovic, J., et al: ‘Minimizing torque ripple of highly saturated salient pole synchronous machines by applying DB-DTFC’, IEEE Trans. Ind. Appl., 2017, 53, (4), pp. 36433651.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2020.0244
Loading

Related content

content/journals/10.1049/iet-pel.2020.0244
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading