access icon free Dynamic performance improvement of buck–cuk converter in renewable energy resources using EHO optimised PR controller

Renewable energy resources energy is widely collected from the natural resources of wind, photovoltaic, and geothermal heat energy. Generally, the hybrid system is affected by the unwanted power quality issues such as harmonics, voltage sag, and swell. The proportional resonant (PR) controller is optimised with an Elephant herding optimisation (EHO) algorithm to investigate the dynamic performance of buck–cuk power converters in hybrid renewable energy sources. The proposed power converter is used to regulate the level of voltages by controlling the switching pulse of the converter depending on the duty cycle ratio. An EHO algorithm is employed for tuning the PR controller gain parameters. In the grid side, shunt active power filters are integrated, and the inductor–capacitor–inductor filter is utilised for solving the overshoot and settling time problems. The total harmonic distortion (THD) and steady-state error are reduced by the proposed technique. The proposed system is designed with the help of MATLAB/Simulink platform, and the output response is determined with the simulated results. The dynamic response of the proposed system is examined based on simulated outcomes, and THD comparison analysis is performed with the existing controllers such as proportional–derivative, proportional–integral–derivative, and fuzzy controller.

Inspec keywords: renewable energy sources; harmonic distortion; dynamic response; voltage control; electric current control; DC-DC power convertors; active filters; power harmonic filters; inductors; PI control; fuzzy control; control system synthesis; power supply quality; power grids; switching convertors; three-term control

Other keywords: inductor–capacitor–inductor filter; EHO algorithm; dynamic response; PR controller gain parameters; buck–cuk power converters; duty cycle ratio; dynamic performance improvement; buck–cuk converter; proportional–derivative –integral–derivative controller; hybrid system; fuzzy controller; Elephant herding optimisation algorithm; total harmonic distortion; settling time problems; voltage swell; voltage sag; EHO optimised PR controller; hybrid renewable energy sources; active power filters; geothermal heat energy; renewable energy resources energy; proportional resonant controller; power converter; unwanted power quality issues

Subjects: Control system analysis and synthesis methods; Current control; Other power apparatus and electric machines; Voltage control; Fuzzy control; Power supply quality and harmonics; Control of electric power systems; DC-DC power convertors

References

    1. 1)
      • 6. Tofoli, F.L., de Castro Pereira, D., de Paula, W.J., et al: ‘Survey on non-isolated high-voltage step-up dc–dc topologies based on the boost converter’, IET Trans. Power Electron., 2015, 8, (10), pp. 20442057.
    2. 2)
      • 9. Chen, W.W., Zane, R., Corradini, L.: ‘Isolated bidirectional grid-tied three-phase AC–DC power conversion using series-resonant converter modules and a three-phase un folder’, IEEE Trans. Power Electron., 2017, 32, (12), pp. 90019012.
    3. 3)
      • 14. Beniwal, N., Hussain, I., Singh, B.: ‘Vector-based synchronization method for grid integration of solar PV-battery system’, IEEE Trans. Ind. Inf., 2019, 15, (9), pp. 49234933.
    4. 4)
      • 21. Pagola, V., Peña, R., Segundo, J., et al: ‘Rapid prototyping of a hybrid PV–wind generation system implemented in a real-time digital simulation platform and Arduino’, Int. J. Electron., 2019, 8, (102), pp. 121.
    5. 5)
      • 25. Ben Said-Romdhane, M., Naouar, M.W., Slama, I.B., et al: ‘Simple and systematic LCL filter design for three-phase grid-connected power converters’, Int. J. Math. Comput. Simul., 2016, 130, pp. 181193.
    6. 6)
      • 22. Manyonge, A.W., Ochieng, R.M., Onyango, F.N., et al: ‘Mathematical modelling of wind turbine in a wind energy conversion system: power coefficient analysis’. Appl. Math. Sci., 2012, 6, (91), pp. 45274536.
    7. 7)
      • 7. Panda, A.K., Patnaik, S.S.: ‘Analysis of cascaded multilevel inverters for active harmonic filtering in distribution networks’, Int. J. Electr. Power Energy Syst., 2015, 66, pp. 216226.
    8. 8)
      • 8. Sundaram, E., Venugopal, M.: ‘On design and implementation of three phase three level shunt active power filter for harmonic reduction using synchronous reference frame theory’, Int. J. Electr. Power Energy Syst., 2016, 81, pp. 4047.
    9. 9)
      • 12. Jing, Y., Al Durra, A., El-Sadaany, E.: ‘Adaptive digital notch filter based on online grid impedance estimation for grid-tied LCL filter systems’, Int. J. Electr. Power Syst. Res., 2019, 172, pp. 183192.
    10. 10)
      • 20. Augustine, N., Suresh, S., Moghe, P., et al: ‘Economic dispatch for a microgrid considering renewable energy cost functions’. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT), Washington, DC, 2012, pp. 17.
    11. 11)
      • 4. Zhou, D., Zhang, G., Blaabjerg, F.: ‘Optimal selection of power converter in DFIG wind turbine with enhanced system-level reliability’, IEEE Trans. Ind. Appl., 2018, 54, (4), pp. 36373644.
    12. 12)
      • 28. Zammit, D., SpiteriStaines, C., Apap, M.: ‘Comparison between PI and PR current controllers in grid connected PV inverters’, Int. J. Electr. Comput. Eng., 2014, 8, (2), pp. 221226.
    13. 13)
      • 13. Zhu, D., Zou, X., Zhao, Y., et al: ‘Systematic controller design for digitally controlled LCL-type grid-connected inverter with grid-current-feedback active damping’, Int. J. Electr. Power Energy Syst., 2019, 110, pp. 642652.
    14. 14)
      • 18. Al-Durra, A., Fayyad, Y., Muyeen, S.M., et al: ‘Fault ride-through of a grid-connected photovoltaic system with quasi Z source inverter’, Int. J. Electr. Power Compon. Syst., 2016, 44, (16), pp. 17861800.
    15. 15)
      • 27. Saban, O.: ‘Z-source T-type inverter for renewable energy systems with proportional resonant controller’, Int. J. Hydrog. Energy, 2016, 41, (29), pp. 1259112602.
    16. 16)
      • 30. Ismaeel, A.A.K., Elshaarawy, I.A., Houssein, E.H., et al: ‘Enhanced elephant herding optimization for global optimization’, IEEE Access, 2019, 7, pp. 3473834752.
    17. 17)
      • 19. Castro, L.M., Rodríguez-Rodríguez, J.R., Martin-del- Campo, C.: ‘Modelling of PV systems as distributed energy resources for steady-state power flow studies’, Int. J. Electr. Power Energy Syst., 2020, 115, p. 105505.
    18. 18)
      • 3. Zhang, G., Tian, Z., Du, H., et al: ‘A novel hybrid DC traction power supply system integrating PV and reversible converters’, Int. J. Energies, 2018, 11, p. 1661.
    19. 19)
      • 16. Mohammed, Z., Hizama, H., Gomes, C.: ‘Lightning-induced transient effects in a hybrid PV–wind system and mitigation strategies’, Int. J. Electr. Power Syst. Res., 2019, 174, p. 105882.
    20. 20)
      • 1. Tan, Y., Muttaqi, K.M., Ciufo, P., et al: ‘Enhanced frequency response strategy for a PMSG-based wind energy conversion system using ultra capacitor in remote area power supply systems’, IEEE Trans. Ind. Appl., 2017, 53, (1), pp. 549558.
    21. 21)
      • 5. Ahmed, J., Salam, Z.: ‘An enhanced adaptive P&O MPPT for fast and efficient tracking under varying environmental conditions’, IEEE Trans. Sustain. Energy, 2018, 9, (3), pp. 14871496.
    22. 22)
      • 10. Neves, F.A.S., Carrasco, M., Mancilla-David, F., et al: ‘Unbalanced grid fault ride-through control for single-stage photovoltaic inverters’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 33383347.
    23. 23)
      • 26. Negi, P., Pal, Y., Leena, G.: ‘Grid-connected photovoltaic system stability enhancement using ant lion optimized model reference adaptive control strategy’, Diff. Equ. Dyn. Syst., 2020, to appear, pp. 123.
    24. 24)
      • 15. Krishan, O., Suhag, S.: ‘Techno-economic analysis of a hybrid renewable energy system for an energy poor rural community’, Int. J. Energy Storage, 2019, 23, pp. 305319.
    25. 25)
      • 17. Ravinder, K., Bansal, H.O.: ‘Investigations on shunt active power filter in a PV-wind-FC based hybrid renewable energy system to improve power quality using hardware-in-the loop testing platform’, Int. J. Electr. Power Syst. Res., 2019, 177, p. 105957.
    26. 26)
      • 2. Xu, P., Shi, K., Bu, F., et al: ‘A vertical-axis off-grid squirrel-cage induction generator wind power system’, Int. J. Energies, 2016, 9, p. 822.
    27. 27)
      • 29. Wipulapong, R., Boonto, S., Polwisate, W.: ‘The convex-concave optimization for the design of a robust proportional-resonant controller for grid-connected inverter’. 2019 58th Annual Conf. of the Society of Instrument and Control Engineers of Japan (SICE), Hiroshima, Japan, 2019, pp. 13981403.
    28. 28)
      • 23. Amutha, W.M., Reanuka, V., Rajini, V.: ‘A novel parallel power conversion technique for efficiency improvement in hybrid DC/DC converter based rural telephony’. Proc. Renewable Energy and Sustainable Energy (ICRESE), Coimbatore, India, 2013, pp. 6469.
    29. 29)
      • 11. Sedaghati, R., Shakarami, M.R.: ‘A novel control strategy and power management of hybrid PV/FC/SC/battery renewable power system-based grid-connected microgrid’, Int. J. Sustain. Cities Soc., 2019, 44, pp. 830843.
    30. 30)
      • 31. Hassanien, A.E., Kilany, M., Houssein, E.H., et al: ‘Intelligent human emotion recognition based on elephant herding optimization tuned support vector regression’, Biomed. Signal Proc. Control, 2018, 45, pp. 182191.
    31. 31)
      • 24. Renugadevi, V., Margaret, A.W., Rajini, V.: ‘A novel improved fused converter based hybrid system with MPPT control for rural telephony’, Int. J. Emerg. Technol. Adv. Eng., 2014, 4, (5), pp. 567572.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2020.0118
Loading

Related content

content/journals/10.1049/iet-pel.2020.0118
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading