access icon free Novel high gain DC–DC converter based on coupled inductor and diode capacitor techniques with leakage inductance effects

In this study, due to the low output voltage that often is presented by renewable energy sources like photovoltaic panels, a single switch high step-up dc–dc converter with high efficiency is proposed. The presented step-up dc–dc converter uses a coupled inductor and diode-capacitor technique to achieve high voltage gain. By changing the turns ratio of the coupled inductor, this novel topology does not need to operate at a high duty cycle conditions to obtain the high voltage gain. Moreover, the leakage inductance energy of the coupled inductor is recovered by using two passive clamp circuits to reduce the stress across the semiconductor devices, which improve efficiency. The operating modes of the proposed converter and the theoretical analysis are considered and finally, a prototype setup has been implemented to accredit the accuracy of the theoretical and simulation analysis.

Inspec keywords: DC-DC power convertors; inductors; renewable energy sources; capacitors

Other keywords: high voltage gain; high duty cycle conditions; leakage inductance energy; renewable energy sources; leakage inductance effects; presented step-up dc–dc converter; diode capacitor techniques; diode-capacitor technique; coupled inductor; low output voltage; single switch high step-up dc–dc converter; novel high gain DC–DC converter

Subjects: Power convertors and power supplies to apparatus; Power electronics, supply and supervisory circuits; Capacitors; DC-DC power convertors

References

    1. 1)
      • 20. Khalilzadeh, M., Abbaszadeh, K.: ‘Non-isolated high step-up DC-DC converter based on coupled inductor with reduced voltage stress’, IET Power Electron., 2015, 8, (11), pp. 21842194.
    2. 2)
      • 25. He, L., Zheng, Z.: ‘High step-up DC-DC converter with switched-capacitor and its zero-voltage switching realization’, IET Power Electron., 2017, 10, (6), pp. 630636.
    3. 3)
      • 4. Ebrahimi, R., Madadi Kojabadi, H., Chang, L., et al: ‘Coupled-inductor-based high step-up DC-DC converter’, IET Power Electron., 2019, 12, (12), pp. 30933104.
    4. 4)
      • 29. Nourani Esfetanaj, N., Peyghami, S., Wang, H., et al: ‘Analytical modeling of 9–150 kHz EMI in single-phase PFC converter’. IECON 2019 - 45th Annual Conf. of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14-17 Oct 2019.
    5. 5)
      • 8. Wilson, T.G.: ‘The evolution of power electronics’, IEEE Trans. Power Electron., 2000, 15, (3), pp. 439446.
    6. 6)
      • 11. Amir, A., Amir, A., Che, H.S., et al: ‘Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems', Renew. Energy, 2019, 136, pp. 11471163.
    7. 7)
      • 27. Hasanpour, S., Baghramian, A., Mojallali, H.: ‘A modified SEPIC-based high step-up DC-DC converter with quasi-resonant operation for renewable energy applications’, IEEE Trans. Ind. Electron., 2019, 66, (5), pp. 35393549.
    8. 8)
      • 21. Liu, H., Hu, H., Wu, H., et al: ‘Overview of high-step-up coupled-inductor boost converters’, IEEE J. Emerging Sel. Top. Power Electron., 2016, 4, (2), pp. 689704.
    9. 9)
      • 14. Wu, G., Ruan, X., Ye, Z.: ‘Nonisolated high step-Up DC-DC converters adopting switched-capacitor cell’, IEEE Trans. Ind. Electron., 2015, 62, (1), pp. 383393.
    10. 10)
      • 23. Madadi Kojabadi, H., Kivi, H.F., Blaabjerg, F.: ‘Experimental and theoretical analysis of trans-z-source inverters with leakage inductance effects’, IEEE Trans. Ind. Electron., 2017, 65, (2), pp. 977987.
    11. 11)
      • 18. Tseng, K., Lin, J., Huang, C.: ‘High step-Up converter with three-winding coupled inductor for fuel cell energy source applications’, IEEE Trans. Power Electron., 2015, 30, (2), pp. 574581.
    12. 12)
      • 16. Axelrod, B., Berkovich, Y., Ioinovici, A.: ‘Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC-DC PWM converters’, IEEE Trans. Circuits Syst. I, Regul.Pap., 2008, 55, (2), pp. 687696.
    13. 13)
      • 17. Jiao, Y., Luo, F.L., Zhu, M.: ‘Voltage-lift-type switched-inductor cells for enhancing DC-DC boost ability: principles and integrations in Luo converter’, IET Power Electron., 2011, 4, (1), pp. 131142.
    14. 14)
      • 7. Kanchev, H., Lu, D., Colas, F., et al: ‘Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications’, IEEE Trans. Ind. Electron., 2011, 58, (10), pp. 45834592.
    15. 15)
      • 19. Liu, H., Li, F., Ai, J.: ‘A novel high step-up dual switches converter with coupled inductor and voltage multiplier cell for a renewable energy system’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 49744983.
    16. 16)
      • 5. Hu, X., Gao, B., Huang, Y., et al: ‘Novel single switch DC-DC converter for high step-up conversion ratio’, J. Power Electron., 2018, 18, (3), pp. 662671.
    17. 17)
      • 6. Hoseinzadeh, M., Ebrahimi, R., Kojabadi, H.M.: ‘A cascade high gain DC-DC converter employing coupled inductor and diode capacitor’. 2019 5th Conf. on Knowledge Based Engineering and Innovation (KBEI), Tehran, Iran, 2019, pp. 205209.
    18. 18)
      • 1. Forouzesh, M., Siwakoti, Y.P., Gorji, S.A., et al: ‘Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications’, IEEE Trans. Power Electron., 2017, 32, (12), pp. 91439178.
    19. 19)
      • 12. Al-Saffar, M.A., Ismail, E.H.: ‘A high voltage ratio and low stress DC-DC converter with reduced input current ripple for fuel cell source', Renew. Energy, 2015, 82, pp. 3543.
    20. 20)
      • 30. Raggl, K., Nussbaumer, T., Johann, W.: ‘Kolar guideline for a simplified differential-mode EMI filter design’, IEEE Trans. Ind. Electron., 2010, 57, (3), pp. 10311040.
    21. 21)
      • 10. Tofoli, F.L., Pereira, D.d.C., Josias de Paula, W., et al: ‘Survey on non-isolated high-voltage step-up dc-dc topologies based on the boost converter’, IET Power Electron., 2015, 8, (10), pp. 20442057.
    22. 22)
      • 26. Farakhor, A., Abapour, M., Sabahi, M.: ‘Study on the derivation of the continuous input current high-voltage gain DC/DC converters’, IET Power Electron., 2018, 11, (10), pp. 16521660.
    23. 23)
      • 15. Wu, G., Ruan, X., Ye, Z.: ‘High step-up DC-DC converter based on switched capacitor and coupled inductor’, IEEE Trans. Ind. Electron., 2018, 65, (7), pp. 55725579.
    24. 24)
      • 13. Axelrod, B., Beck, Y., Berkovich, Y.: ‘High step-up DC-DC converter based on the switched-coupled-inductor boost converter and diode-capacitor multiplier: steady state and dynamics’, IET Power Electron., 2015, 8, (8), pp. 14201428.
    25. 25)
      • 24. Wong, Y.-S., Chen, J.-F., Liu, K.-B., et al: ‘A novel high step-up DC-DC converter with coupled inductor and switched clamp capacitor techniques for photovoltaic systems’, Energies, 2017, 10, (3), p. 378.
    26. 26)
      • 22. Tseng, K., Huang, C.: ‘High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 13111319.
    27. 27)
      • 3. Li, W., He, X.: ‘Review of nonisolated high-step-Up DC/DC converters in photovoltaic grid-connected applications’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12391250.
    28. 28)
      • 28. C.I.S.P.R., Information technology equipment-Radio disturbance characteristics-Limits and methods of measurement-Publication 22, 2008, IEC Int. Special Committee on Radio Interference.
    29. 29)
      • 9. Chen, S., Liang, T., Yang, L., et al: ‘A safety enhanced, high step-up DC-DC converter for AC photovoltaic module application’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 18091817.
    30. 30)
      • 2. Ai, J., Lin, M.: ‘Ultralarge gain step-up coupled-inductor DC–DC converter with an asymmetric voltage multiplier network for a sustainable energy system’, IEEE Trans. Power Electron., 2017, 32, (9), pp. 68966903.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2020.0117
Loading

Related content

content/journals/10.1049/iet-pel.2020.0117
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading