access icon free State-space modelling of LLC resonant half-bridge DC–DC converter

Recently, LLC resonant converters have attracted significant research from industry and academia for AC–DC and DC–DC power conversion with high efficiency and remarkable power density. They are appealing candidates for numerous vehicular and renewable energy applications including battery chargers for electric vehicles and drivers of LED lights. This study introduces a mathematical model of LLC resonant half-bridge DC–DC converter, which captures its steady-state behaviours for both continuous conduction mode and discontinuous conduction mode operations. One major advantage of the proposed model lies in accurate estimation of the switching frequency of power switches under a wide range of parametric variations. This benefit is, however, not offered by the prevailing method based on the first harmonic approximation (FHA). The analytical derivations of the system's state-space model, as well as equations for calculating the switching frequency by FHA, are discussed in details. For illustration, a 340W digitally controlled LLC resonant converter is targeted in this study. The simulation analyses of current and voltage waveforms for light and heavy load conditions are presented. Moreover, the experimental results, along with the comparison of switching frequency estimation for both methods, are demonstrated and discussed, which confirms the validity and effectiveness of the proposed model.

Inspec keywords: battery chargers; DC-DC power convertors; resonant power convertors; digital control; electric vehicles

Other keywords: AC–DC; switching frequency; system; LLC resonant converter; LLC resonant half-bridge DC–DC converter; DC–DC power conversion; power 340.0 W; state-space modelling

Subjects: Transportation; Control of electric power systems; Power electronics, supply and supervisory circuits; DC-DC power convertors; Power convertors and power supplies to apparatus

References

    1. 1)
      • 28. Ivensky, G., Bronshtein, S., Abramovitz, A.: ‘Approximate analysis of resonant LLC DC-DC converter’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 32743284.
    2. 2)
      • 9. Ku, B., Cai, W., Fahimi, B.: ‘Low-power LLC resonant AC-DC converter for phone charging applications’. Proc. IEEE Dallas Circuits and Systems Conf., Dallas, USA, October 2016, pp. 14.
    3. 3)
      • 15. Li, Z., Wu, T., Zhang, G., et al: ‘Hybrid modulation method combining variable frequency and double phase-shift for a 10 kW LLC resonant converter’, IET Power Electron., 2018, 11, (13), pp. 21612169.
    4. 4)
      • 8. Hua, C.C., Fang, Y.H., Lin, C.W.: ‘LLC resonant converter for electric vehicle battery chargers’, IET Power Electron., 2016, 9, (12), pp. 23692376.
    5. 5)
      • 10. Sun, W., Wu, H., Hu, H., et al: ‘Modified LLC resonant converter with secondary paralleled bidirectional switch for applications with hold-up time requirement’, IET Power Electron., 2017, 10, (3), pp. 398404.
    6. 6)
      • 16. Tang, X., Wu, H., Zhao, J., et al: ‘Family of half-bridge LLC resonant converters with auxiliary switches for hold-up operation’, IET Power Electron., 2019, 12, (6), pp. 13761384.
    7. 7)
      • 11. Tan, X., Ruan, X.: ‘Optimal design of DCM LCC resonant converter with inductive filter based on mode boundary map’, IEEE Trans. Power Electron., 2015, 30, (8), pp. 41444155.
    8. 8)
      • 27. Zeng, H., Peng, F.Z., Karki, U.: ‘First order frequency-domain analytical model for resonant converters in CCM’. Proc. IEEE Energy Conversion Conf. & Exposition, Portland, USA, September 2018, pp. 19972002.
    9. 9)
      • 18. Jang, J., Joung, M., Choi, B., et al: ‘Dynamic analysis and control design of optocoupler-isolated LLC series resonant converters with wide input and load variations’, IET Power Electron., 2012, 5, (6), pp. 755764.
    10. 10)
      • 14. Lin, L., Xu, J., Chen, Y., et al: ‘Asymmetrical hybrid-controlled half-bridge LCC resonant converter with low conduction loss and wide ZVS operation range’, IET Electron. Lett., 2017, 53, (21), pp. 14221424.
    11. 11)
      • 7. Yang, B., Lee, F.C., Zhang, A.J., et al: ‘LLC resonant converter for front end DC/DC conversion’. Proc. IEEE Applied Power Electronics Conf. & Exposition, Dallas, USA, March 2006, pp. 11081112.
    12. 12)
      • 24. Fang, X., Hu, H., Shen, Z.J., et al: ‘Operation mode analysis and peak gain approximation of the LLC resonant converter’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 19851995.
    13. 13)
      • 22. Li, S., Fahimi, B., Kiani, M.: ‘Bifurcation analysis and experimentation of peak current-controlled boost converter’. Proc. IEEE IECON, Lisbon, Portugal, October 2019, pp. 16331638.
    14. 14)
      • 3. Bonache-Samaniego, R., Olalla, C., Martínez-Salamero, L., et al: ‘Design of self-oscillating resonant converters based on a variable structure systems approach’, IET Power Electron., 2016, 9, (1), pp. 111119.
    15. 15)
      • 23. Hsu, W.C., Chen, J.F., Hsieh, Y.P., et al: ‘Design and steady-state analysis of parallel resonant DC–DC converter for high-voltage power generator’, IEEE Trans. Power Electron., 2017, 32, (2), pp. 957966.
    16. 16)
      • 1. Aydemir, M.T., Bendre, A., Venkataramanan, G.: ‘A critical evaluation of high power hard and soft switched isolated DC–DC converters’. Proc. IEEE Ind. Appl. Conf., Pittsburgh, USA, October 2002, pp. 13381345.
    17. 17)
      • 26. Huang, H.: ‘Designing an LLC resonant half-bridge power converter’. TI Literature No. SLUP263, 2010, vol. 3, pp. 20102011.
    18. 18)
      • 2. Li, X., Zhang, L., Guo, S., et al: ‘Understanding switching losses in SiC MOSFET: toward lossless switching’. Proc. IEEE Workshop on Wide Bandgap Power Devices and Applications, Blacksburg, USA, November 2015, pp. 257262.
    19. 19)
      • 25. Tian, S., Lee, F.C., Li, Q.: ‘A simplified equivalent circuit model of series resonant converter’, IEEE Trans. Power Electron., 2016, 31, (5), pp. 39223931.
    20. 20)
      • 4. Lee, S.H., Cho, Y.W., Cha, W.J., et al: ‘High efficient series resonant converter using direct power conversion’, IET Power Electron., 2014, 7, (12), pp. 30453051.
    21. 21)
      • 17. Choi, H.: ‘Analysis and design of LLC resonant converter with integrated transformer’. Proc. IEEE Applied Power Electronics Conf. & Exposition, Anaheim, USA, 2007, pp. 16301635.
    22. 22)
      • 19. Zhao, Z., Xu, Q., Dai, Y.: ‘Minimum resonant capacitor design of high-power LLC resonant converter for comprehensive efficiency improvement in battery charging application’, IET Power Electron., 2018, 11, (11), pp. 18661874.
    23. 23)
      • 21. Li, S., Fahimi, B.: ‘On the period-doubling bifurcation in PWM controlled buck converter’. Proc. IEEE Transportation Electrification Conf. & Expo, Long Beach, USA, June 2018, pp. 589594.
    24. 24)
      • 20. Kang, S.W., Kim, H.J., Cho, B.H.: ‘Adaptive voltage-controlled oscillator for improved dynamic performance in LLC resonant converter’, IEEE Trans. Ind. Appl., 2016, 52, (2), pp. 16521659.
    25. 25)
      • 12. Yang, R., Ding, H., Xu, Y., et al: ‘An analytical steady-state model of LCC type series–parallel resonant converter with capacitive output filter’, IEEE Trans. Power Electron., 2013, 29, (1), pp. 328338.
    26. 26)
      • 6. Wang, Y., Han, F., Yang, L., et al: ‘Dual-transformer soft-switching DC–DC resonant converter with multiple resonant elements’, IET Power Electron., 2018, 11, (15), pp. 25382544.
    27. 27)
      • 5. Ghahderijani, M.M., Castilla, M., Momeneh, A., et al: ‘Robust and fast sliding-mode control for a DC–DC current-source parallel-resonant converter’, IET Power Electron., 2017, 11, (2), pp. 262271.
    28. 28)
      • 13. Huang, D., Ji, S., Lee, F.C.: ‘LLC resonant converter with matrix transformer’, IEEE Trans. Power Electron., 2014, 29, (8), pp. 43394347.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.1503
Loading

Related content

content/journals/10.1049/iet-pel.2019.1503
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading