access icon free Continuous model predictive control of interleaved boost converter with current compensation

An interleaved DC–DC boost converter is widely used in DC power systems such as fuel cell systems or other systems requiring high-power quality for increasing and stabilising the output voltage. The performance of the converter can be affected by the control strategy. In this study, a robustness continuous control set model predictive control (CCS-MPC) for an interleaved DC–DC boost converter is proposed to achieve optimised transient dynamics and steady performance. To deal with unknown load variation and systems uncertainties, an extended Kalman observer is designed to estimate the lumped disturbance, including the load variation and unmodelled part. Based on the disturbance estimation, a dynamic current reference with the disturbance and the integrated voltage error is formulated for the optimal voltage tracking. Also, a prediction-accuracy-enhanced CCS-MPC for a wide range of operation points and multi-parameter disturbance is obtained. The proposed approach could stabilise the output voltage with good robustness under external disturbance and operation point change. Compared with other existing controllers, i.e. a proportional–integral controller, a sliding mode controller, and a finite control set model predictive controller, both the steady and transient performances are validated by a simulation and experimental test bench.

Inspec keywords: control system synthesis; predictive control; DC-DC power convertors; voltage control; nonlinear control systems; variable structure systems; robust control; observers; power convertors

Other keywords: fuel cell systems; DC power systems; interleaved boost converter; proportional–integral controller; control strategy; finite control; model predictive controller; output voltage; prediction-accuracy-enhanced CCS-MPC; robustness continuous control; interleaved DC–DC boost converter; high-power quality; sliding mode controller; systems uncertainties; continuous model predictive control

Subjects: Voltage control; Optimal control; Multivariable control systems; Control system analysis and synthesis methods; Control of electric power systems; Power electronics, supply and supervisory circuits; Nonlinear control systems; DC-DC power convertors; Stability in control theory

References

    1. 1)
      • 15. Vazquez, S., Aguilera, R.P., Acuna, P., et al: ‘Model predictive control for single-phase NPC converters based on optimal switching sequences’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 75337541.
    2. 2)
      • 11. Kouro, S., Perez, M.A., Rodriguez, J., et al: ‘Model predictive control: MPC's role in the evolution of power electronics’, IEEE Ind. Electron. Mag., 2015, 9, pp. 821.
    3. 3)
      • 20. Preindl, M., Bolognani, S.: ‘Comparison of direct and PWM model predictive control for power electronic and drive systems’. IEEE 28th Applied Power Electronics Conf. and Exposition, Long Beach, CA, USA, 2013, pp. 25252533.
    4. 4)
      • 2. Erickson, R.W., Maksimovic, D.: ‘Fundamentals of power electronics’ (Springer-Verlag, New York, NY, USA, 2007).
    5. 5)
      • 3. Patella, B.J., Prodic, A., Zirger, A., et al: ‘High-frequency digital PWM controller IC for DC-DC converters’, IEEE Trans. Power Electron., 2003, 15, (1), pp. 438446.
    6. 6)
      • 18. Dehghanzadeh, A., Farahani, G., Vahedi, H., et al: ‘Model predictive control design for DC–DC converters applied to a photovoltaic system’, Electr. Power Energy Syst., 2018, 103, (103), pp. 537544.
    7. 7)
      • 24. Karamanakos, P., Papafotiou, G., Manias, S.N.: ‘Model predictive control of the interleaved DC–DC boost converter’. 15th Int. Conf. on System Theory, Control and Computing, Sinaia, 2011, pp. 16.
    8. 8)
      • 5. Chen, Z.: ‘PI and sliding mode control of a Cuk converter’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 36953703.
    9. 9)
      • 26. Beccuti, A.G., Mariéthoz, S., Cliquennois, S., et al: ‘Explicit model predictive control of DC–DC switched-mode power supplies with extended Kalman filtering’, IEEE Trans. Ind. Electron., 2009, 56, (6), pp. 18641874.
    10. 10)
      • 23. Karamanakos, P., Geyer, T., Manias, S.: ‘Model predictive control of the interleaved DC–DC boost converter with coupled inductors’. 2013 15th European Conf. on Power Electronics and Applications (EPE), Lille, 2013, pp. 110.
    11. 11)
      • 12. Yang, J., Zheng, W.: ‘Continuous model predictive control for linear disturbed systems under mismatching condition’. Proc. 11th Congress Intelligent Control Automation, Shenyang, People's Republic of China, 2014.
    12. 12)
      • 10. Takagi, T., Sugeno, M.: ‘Fuzzy identification of system and its applications to modeling and control’, IEEE Trans. Syst. Man Cybern., 1985, SMC-15, (1), pp. 116132.
    13. 13)
      • 14. Vazquez, S., Rodriguez, J., Rivera, M., et al: ‘Model predictive control for power converters and drives: advances and trends’, IEEE Trans. Power Electron., 2017, 64, (2), pp. 935947.
    14. 14)
      • 9. Zadeh, L.A.: ‘Outline of a new approach to the analysis of complex systems and decision processes’, IEEE Trans. Syst., Man, Cybern., 1973, SMC-3, (1), pp. 2844.
    15. 15)
      • 6. Santos, O.L., Martinez-Salamero, L., Garcia, G., et al: ‘Robust sliding-mode control design for a voltage regulated quadratic boost converter’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 23132327.
    16. 16)
      • 19. Ahmed, A.A., Koh, B.K., Lee, Y.I.: ‘A comparison of finite control set and continuous control set model predictive control schemes for speed control of induction motors’, IEEE Trans. Ind. Inf., 2018, 14, (4), pp. 13341346.
    17. 17)
      • 16. Yang, Y., Tan, S., Hui, S.Y.R.: ‘Adaptive reference model predictive control with improved performance for voltage-source inverters’, IEEE Trans. Control Syst. Technol., 2018, 26, (2), pp. 724731.
    18. 18)
      • 13. Guzman, R., de Vicuna, L.G., Camacho, A., et al: ‘Receding-horizon model predictive control for a three-phase VSI with an LCL filter’, IEEE Trans. Ind. Electron., 2018, 66, pp. 66716680.
    19. 19)
      • 21. Cavanini, L., Cimini, G., Ippoliti, G., et al: ‘Model predictive control for pre-compensated voltage mode controlled DC–DC converters’, IET Control Theory Appl., 2017, 11, (15), pp. 25142520.
    20. 20)
      • 1. Panwar, N., Kaushik, S., Kothari, S.: ‘Role of renewable energy sources in environmental protection: a review’, Renew. Sustain. Energy Rev., 2011, 15, (3), pp. 15131524.
    21. 21)
      • 4. Huangfu, Y., Zhuo, S., Chen, F., et al: ‘Robust voltage control of floating interleaved boost converter for fuel cell systems’, IEEE Trans. Ind. Appl., 2018, 54, (1), pp. 665674.
    22. 22)
      • 27. Liang, Y., Liang, Z., Zhao, D., et al: ‘Model predictive control of interleaved DC–DC boost converter with current compensation’. IEEE Int. Conf. on Industrial Technology (ICIT), Melbourne, Australia, 2019.
    23. 23)
      • 17. Liang, Y., Liang, Z., Zhao, D., et al: ‘Model predictive control for interleaved DC–DC boost converter based on Kalman compensation’. IEEE Power Electronics Applications Conf. Exposition (PEAC), Shenyang, People's Republic of China, 2018.
    24. 24)
      • 25. Karamanakos, P., Geyer, T., Manias, S.: ‘Direct model predictive current control strategy of DC–DC boost converters’, IEEE J. Emerging Sel. Top. Power Electron., 2013, 1, (4), pp. 337346.
    25. 25)
      • 22. Cheng, L., Acuna, P., Aguilera, R.P., et al: ‘Model predictive control for DC–DC boost converters with reduced-prediction horizon and constant switching frequency’, IEEE Trans. Power Electron., 2018, 33, (10), pp. 90649075.
    26. 26)
      • 28. Garayalde, E., Aizpuru, I., Iraola, U., et al: ‘Finite control set MPC vs continuous control set MPC performance comparison for synchronous buck converter control in energy storage application’. 2019 Int. Conf. on Clean Electrical Power (ICCEP), Otranto, Italy, 2019, pp. 490495.
    27. 27)
      • 7. Tan, S.C., Lai, Y.M., Tse, C.K.: ‘General design issues of sliding-mode controllers in DC–DC converters’, IEEE Trans. Ind. Electron., 2008, 55, (3), pp. 11601174.
    28. 28)
      • 8. Beid, S.E., Doubabi, S.: ‘DSP-Based implementation of fuzzy output tracking control for a boost converter’, IEEE Trans. Ind. Electron., 2014, 61, (1), pp. 196209.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.1493
Loading

Related content

content/journals/10.1049/iet-pel.2019.1493
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading