access icon free Secondary-side phase-shifted full-bridge converter with reset winding

A resonant inductor and two clamping diodes are introduced into the secondary phase shift full-bridge converter (SPS-FBC), which can well suppress voltage spike across the rectifiers. However, the resonant inductor and two clamping diodes will bring some other problems. In this study, an auxiliary winding in series with the resonant inductor is added to the SPS-FBC to reset the clamp diode current rapidly. The auxiliary winding not only reduces the circulation losses of the switches and the clamping diodes, but also makes the clamping diodes naturally turn-off and avoids the reverse recovery even when the output filter inductance and magnetising inductance are relatively large. The principle of operation and performance are illustrated and verified on a 1.5 kW experimental circuit. In addition, the efficiency and losses of the converters with/without reset winding are compared and analysed. The efficiency of the converter with reset winding is significantly improved over the entire operating range and the peak efficiency is 96.60% at full load.

Inspec keywords: switching convertors; zero voltage switching; inductors; diodes; rectifiers; DC-DC power convertors; PWM power convertors; power transformers

Other keywords: side phase-shifted full-bridge converter; SPS-FBC; magnetising inductance; clamp diode current; power 1.5 kW; resonant inductor; secondary phase shift full-bridge converter; reset winding; clamping diodes; output filter inductance

Subjects: Power convertors and power supplies to apparatus; DC-DC power convertors; Transformers and reactors

References

    1. 1)
      • 2. Hu, B.X., Brothers, J.A., Zhang, X.: ‘An isolated phase-shift-controlled quasi-switched-capacitor DC/DC converter with gallium nitride devices’, IEEE J. Emerging Sel. Topics Power Electron., 2019, 7, (2), pp. 609621.
    2. 2)
      • 9. Tah, A., Lakshmi, N.: ‘Simple soft-switched phase-shifted FB converter for reduced voltage stress and negligible duty cycle loss’, IET Power Electron., 2019, 12, (11), pp. 113.
    3. 3)
      • 7. Zhu, J., Qian, Q., Lu, S.: ‘A phase-shift triple full-bridge converter with three shared leading-legs’, IEEE J. Emerging Sel. Topics Power Electron., 2018, 6, (4), pp. 19121920.
    4. 4)
      • 21. Shu, L., Chen, W., Ma, D.: ‘Analysis of strategy for achieving zero-current switching in full-bridge converters’, IEEE Trans. Ind. Electron., 2018, 65, (7), pp. 55095517.
    5. 5)
      • 13. Dudrik, J., Trip, N.: ‘Soft-switching PS-PWM DC-DC converter for full-load range applications’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 28072814.
    6. 6)
      • 25. Wu, X., Xie, X., Zhao, C.: ‘Low voltage and current stress ZVZCS full bridge DC–DC converter using center tapped rectifier reset’, IEEE Trans. Ind. Electron., 2008, 55, (3), pp. 14701477.
    7. 7)
      • 23. Ruan, X., Yan, Y.: ‘A novel zero-voltage and zero-current-switching PWM full-bridge converter using two diodes in series with the lagging leg’, IEEE Trans. Ind. Electron., 2001, 48, (4), pp. 777785.
    8. 8)
      • 17. Chen, Z., Ji, B., Ji, F., et al: ‘A novel ZVS full-bridge converter with auxiliary circuit’. IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA, USA, March 2010, pp. 14481453.
    9. 9)
      • 16. Jain, P.K., Kang, W., Soin, H., et al: ‘Analysis and design considerations of a load and line independent zero voltage switching full bridge DC-DC convener topology’, IEEE Trans. Power Electron., 2002, 17, (5), pp. 649657.
    10. 10)
      • 28. Akamatsu, K., Mishima, T., Nakaoka, M.: ‘A zero voltage and zero current soft-switching PWM dc-dc converter with synchronous phase shifting hybrid rectifier’. IEEE Applied Power Electronics Conf. and Exposition (APEC), Palm Springs, CA, USA, May 2013, pp. 18.
    11. 11)
      • 22. Wijeratne, D., Moschopoulos, G.: ‘A ZVS-PWM full-bridge converter with reduced conduction losses’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 35013513.
    12. 12)
      • 12. Dong, L., Deng, F., Zheng, G.: ‘Input-parallel output-parallel (IPOP) three-level (TL) DC/DC converters with interleaving control strategy for minimizing and balancing capacitor ripple currents’, IEEE J. Emerging Sel. Topics Power Electron., 2017, 5, (3), pp. 11221132.
    13. 13)
      • 11. Lee, I., Moon, G.: ‘Phase-shifted PWM converter with a wide ZVS range and reduced circulating current’, IEEE Trans. Power Electron., 2013, 28, (2), pp. 908919.
    14. 14)
      • 3. Mallik, A., Khaligh, A.: ‘Maximum efficiency tracking of an integrated two-staged ac-dc converter using variable dc link voltage’, IEEE Trans. Ind. Electron.., 2018, 65, (11), pp. 84088421.
    15. 15)
      • 20. Jang, Y., Jovanovic, M.M.: ‘A new PWM ZVS full-bridge converter’, IEEE Trans. Power Electron., 2007, 22, (3), pp. 987994.
    16. 16)
      • 15. Hua, G., Lee, F.C., Jovanovic, M.M.: ‘An improved full-bridge zero-voltage-switched PWM converter using a saturable inductor’, IEEE Trans. Power Electron., 1993, 8, (4), pp. 530534.
    17. 17)
      • 14. Zhao, L., Li, H., Wu, X., et al: ‘An improved phase-shifted full-bridge converter with wide-range ZVS and reduced filter requirement’, IEEE Trans. Ind. Electron., 2018, 65, (3), pp. 21672176.
    18. 18)
      • 4. Zhang, D., Zhang, D.L.: ‘Flexible-structured phase-shifted multiple-full-bridge DC–DC power supply with wide range output’, IET Power Electron., 2016, 9, (1), pp. 132141.
    19. 19)
      • 26. Morimoto, T., Shirakawa, S., Koudriavtsev, O.: ‘Zero voltage and zero-current hybrid soft-switching phase-shifted PWM dc/dc converter for high power applications’, IEEE Appl. Power Electron. Conf. Expo., 2000, 1, (2), pp. 104110.
    20. 20)
      • 8. Zhao, L., Li, H., Hou, Y., et al: ‘Operation analysis of a phase-shifted full-bridge converter during the dead-time interval’, IET Power Electron., 2016, 9, (9), pp. 17771783.
    21. 21)
      • 1. Lin, B.R., Chu, C.W.: ‘Hybrid full-bridge and LLC converter with wide ZVS range and less output inductance’, IET Power Electron., 2016, 9, (2), pp. 377384.
    22. 22)
      • 19. Jang, Y., Jovanovic, M.M., Chang, Y.: ‘A new ZVS-PWM full-bride converter’, IEEE Trans. Power Electron., 2003, 18, (5), pp. 11221129.
    23. 23)
      • 27. Mishima, T., Akamatsu, K., Nakaoka, M.: ‘A high frequency-link secondary-side phase-shifted full-range soft-switching PWM DC–DC converter with ZCS active rectifier for EV battery chargers’, IEEE Trans. Power Electron., 2013, 28, (12), pp. 57585773.
    24. 24)
      • 18. Ayyanar, R., Mohan, N.: ‘Novel soft-switched DC-DC converter with full ZVS range and reduced filter requirement-part I: regulated-output applications’, IEEE Trans. Power Electron., 2001, 16, (2), pp. 184192.
    25. 25)
      • 24. Cho, J., Baek, J., Jeong, C.: ‘Novel zero voltage and zero-current-switching full bridge PWM converter using transformer auxiliary winding’, IEEE Trans. Power Electron., 2000, 15, (2), pp. 250257.
    26. 26)
      • 5. Tang, Y., Wu, Y., Chen, Z.: ‘Hybrid mode control for wide range soft-switched full-bridge converter with auxiliary parallel inductor networks’, IET Power Electron., 2019, 12, (7), pp. 16701678.
    27. 27)
      • 10. Chen, Z., Yong, C., Qiang, C., et al: ‘Isolated series-capacitor based full bridge converter with reduced circulating losses and wide soft switching range’, IEEE J. Emerging Sel. Topics Power Electron., 2019, 7, (2), pp. 12721285.
    28. 28)
      • 6. Lim, C., Moon, G.: ‘Phase-shifted full-bridge DC–DC converter with high efficiency and high-power density using centre-tapped clamp circuit for battery charging in electric vehicles’, IEEE Trans. Power Electron.,2019, 34, (11), pp. 1094510959.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.1470
Loading

Related content

content/journals/10.1049/iet-pel.2019.1470
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading