Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Dual range flyback topology for high efficiency at dual voltage mains

This study introduces a dual range flyback converter, which overcomes low efficiency of the conventional flyback converter for universal mains voltages, i.e. 220 and 110 V AC mains. The topology comprises of reconfigurable primary power loops enabled by additional state switches. This combination allows the converter to run in parallel or series modes, enhancing the performance at 220 V AC high line or 110 V AC low line mains. It reduces the voltage rating of devices, supports two working points that operate in boundary conduction mode under fixed frequency and improves the utilisation of the devices. A 100 kHz, 60 W, 110 V AC or 220 V AC to 13 V DC converter has been designed and tested. The experimental results of the proposed converter have been compared against a conventional flyback converter. The results show a small improvement of performance at low voltage (110 V AC) and considerable performance improvement at high voltage (230 V AC): 0.6 and 2.3% efficiency improvement at full load, respectively.

References

    1. 1)
      • 24. Liang, T.J., Wu, J.P., Tseng, W.C., et al: ‘Line-frequency dual input-voltage-level LED driver’. IEEE Applied Power Electronics Conf. Exposition (APEC), March 2015.
    2. 2)
      • 2. Halder, T., Saha, S.S., Majumdar, B., et al: ‘A new control circuit extends the effective duty cycle range of the flyback converters’. IEEE Power Electronics and Drives Systems, 2005, vol. 1, pp. 413417.
    3. 3)
      • 7. Sang, H.K., Maksimovic, D., Cohen, I.: ‘Efficiency optimization in digitally controlled flyback DC–DC converters over wide ranges of operating conditions’, Proc. IEEE Trans. Power Electron., 2012, 27, (8), pp. 37343748.
    4. 4)
      • 14. Connaughton, A., Talei, A.P., Leong, K.K., et al: ‘Variable on-time control scheme for the secondary-side controlled flyback converter’, IEEE Trans. Power Electron., 2019, 34, (3), pp. 24162426.
    5. 5)
      • 4. Coruh, N., Urgun, S., Erfidan, T.: ‘Design and implementation of flyback converters’. 2010 the Fifth IEEE Conf. Industrial Electronics and Applications (ICIEA), June 2010, pp. 11891193.
    6. 6)
      • 23. Lidak, P.: ‘Critical conduction mode, flyback switching power supply using the MC33364’, Application Note AN1594, MOTOROLA.
    7. 7)
      • 19. Alou, P., García, O., Cobos, J.A., et al: ‘Flyback with active clamp: a suitable topology for low power and very wide-input-voltage range applications’. Proc. 17th Annual IEEE Applied Power Electronic Conf. Exposition (APEC), March 2002, vol. 1, pp. 242248.
    8. 8)
      • 3. Padiyar, U.S., Kamath, V.: ‘Design and implementation of a universal input flyback converter’. 2016 Int. Conf. Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, 2016, pp. 34283433.
    9. 9)
      • 16. Liao, C.-S., Smedley, K.: ‘Design of high-efficiency flyback converter with energy regenerative snubber’. Applied Power Electronics Conf. Exposition 2008 APEC 2008 23 Annual IEEE, February 2008, pp. 796800.
    10. 10)
      • 27. DRF input diode cost data information from DigiKey site: https://www.digikey.co.uk/products/en/discrete-semiconductor-products/diodes-rectifiers-single/280?k=SMA+200V+diode&k=&pkeyword=SMA+200V+diode&sv =0&pv143=407971&sf=1&FV=−8%7C280&quantity=&ColumnSort=0&page=1&pageSize=25.
    11. 11)
      • 28. DRF state switches cost data information from DigiKey site: https://www.digikey.co.uk/products/en/discrete-semiconductor-products/transistors-fets-mosfets-single/278?FV=mu200V%7C2068%2C-8%7C278&quantity=0&ColumnSort=1000011&page=1&k=MOSFET+SOT223&pageSize=25&pkeyword=MOSFET+SOT223.
    12. 12)
      • 18. Halder, T.: ‘Selection of switching skills of the power MOSFET in the static converter’. IEEE INDICON, 2017, pp. 16.
    13. 13)
      • 9. Lahcen, E.I., Baskys, A., Bielskis, E., et al: ‘Impact of flyback transformer and switch parameters on efficiency of single-stage photovoltaic microinverter’. 2018 Open Conf. Electrical, Electronic and Information Sciences (eStream) IEEE, 2018.
    14. 14)
      • 12. Park, J.-P., Roh, Y.-S., Moon, Y.-J., et al: ‘A CCM/DCM dual-mode synchronous rectification controller for a high-efficiency flyback converter’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 768774.
    15. 15)
      • 15. Zhang, J., Huang, X., Wu, X., et al: ‘A high-efficiency flyback converter with new active clamp technique’, IEEE Trans. Power Electron., 2010, 25, (7), pp. 17751785.
    16. 16)
      • 6. Huber, L., Jovanovic, M.M., Song, H., et al: ‘Flyback converter with hybrid clamp’. 2018 IEEE Applied Power Electronics Conf. Exposition (APEC), 2018.
    17. 17)
      • 29. Infineon rectifier MOSFET cost data information from DigiKey site: https://www.digikey.co.uk/products/en/discrete-semiconductor-products/transistors-fets-mosfets-single/278?FV=16%7C294806%2C69%7C409393%2C606%7C378999%2C1989%7C0%2Cmu100V%7C2068%2Cmu120V%7C2068%2Cmu20V%7C2068%2Cmu25V%7C2068%2Cmu30V%7C2068%2Cmu34V%7C2068%2Cmu40V%7C2068%2Cmu55V%7C2068%2Cmu60V%7C2068%2Cmu75V%7C2068%2Cmu80V%7C2068%2C-8%7C278&quantity=0&ColumnSort=0&page=1&stock=1&k=Infineon+Optimos&pageSize=25&pkeyword=Infineon+Optimos.
    18. 18)
      • 17. Dutta, S., Maiti, D., Sil, A.K., et al: ‘A soft-switched flyback converter with recovery of stored energy in leakage inductance’. Power Electronics (IICPE), 2012, pp. 15.
    19. 19)
      • 11. Huang, G.-C., Liang, T.-J., Chen, K.-H.: ‘Losses analysis and low standby losses quasi-resonant flyback converter design’. IEEE Int. Symp. Circuits and Systems, May 2012, pp. 217220.
    20. 20)
      • 20. Lo, Y.-K., Wang, C.-F., Lin, J.-Y., et al: ‘Analysis and design of a dual-mode flyback converter’. Proc. IEEE Int. Conf. Sustainable Energy Technologies, December 2010, pp. 13.
    21. 21)
      • 8. Stracquadaini, R.: ‘Mixed mode control (fixed off time & quasi-resonant) for flyback converter’. IECON 2010 – 36th Annual Conf. IEEE Industrial Electronics Society, 2010, pp. 556561.
    22. 22)
      • 5. Kim, C.-E., Baek, J.-I., Lee, J.-B.: ‘High-efficiency single-stage LLC resonant converter for wide-input-voltage range’, IEEE Trans. Power Electron., 2018, 33, (9), pp. 78327840.
    23. 23)
      • 13. Talesara, B., Jayapal, R., Susheel, B., et al: ‘Efficiency enhancement of flyback converter using synchronous rectification’. Proc. Annual IEEE India Conf., December 2015, pp. 15.
    24. 24)
      • 10. Park, Y., Choi, H.: ‘A efficiency improvement methodology for active mode efficiency regulation’. Proc. IEEE Int. Symp. Electronics and the Environment, 2008, pp. 15.
    25. 25)
      • 22. Johny, L.M.K., Sebastian, T.K.J.: ‘A flyback DCM DC–AC converter for PV application’. Proc. Annual Int. Conf. Emerging Research Areas and 2013 Int. Conf. Microelectronic, Communications and Renewable Energy, 2013, pp. 16.
    26. 26)
      • 1. Lonappan, R., David, D.: ‘Soft-switched flyback DC–DC converter for wide-input voltage and full load range application’. 2015 Int. Conf. Circuit, Power and Computing Technologies (ICCPCT), 2015.
    27. 27)
      • 21. Wu, Q.C., Liang, T.J., Chen, K.H., et al: ‘Quasi-resonant flyback converter with new valley voltage detection mechanism’. 2018 IEEE Applied Power Electronics Conf. Exposition (APEC), 2018.
    28. 28)
      • 25. OnSemi Primary MOSFET cost data information from DigiKey site: https://www.digikey.co.uk/products/en/discrete-semiconductor-products/transistors-fets-mosfets-single/278?k=OnSemi+MOSFET&k=&pkeyword=OnSemi+MOSFET&sv=0&pv606=378999&sf=0&FV=16%7C413148%2C16%7C413153%2C16%7C413154%2C1989%7C0%2Cmu200V%7C2068%2Cmu250V%7C2068%2Cmu300V%7C2068%2Cmu400V%7C2068%2Cmu500V%7C2068%2Cmu600V%7C2068%2Cmu650V%7C2068%2Cmu700V%7C2068%2Cmu800V%7C2068%2Cmu900V%7C2068%2C-8%7C278&quantity=&ColumnSort=0&page=1&stock=1&pageSize=25.
    29. 29)
      • 26. Nichicon primary capacitor cost and size data information from DigiKey site: https://www.digikey.co.uk/products/en/capacitors/aluminum-electrolytic-capacitors/58?k=Nichicon+UCY&k=&pkeyword=Nichicon+UCY&sv=0&sf=0&FV=1989%7C0%2C-8%7C58&quantity=&ColumnSort=0&page=1&stock=1&pageSize=25.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.1371
Loading

Related content

content/journals/10.1049/iet-pel.2019.1371
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address