Your browser does not support JavaScript!

Harmonic analysis of grid-connected inverters considering external distortions: addressing harmonic emissions up to 9 kHz

Harmonic analysis of grid-connected inverters considering external distortions: addressing harmonic emissions up to 9 kHz

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Grid-tied inverters, used in renewable energy sources, are exposed to distortions emitted by various sources including the reference signal, external power grid, and DC-link along with harmonics created by the pulse width modulation unit. However, the effect of these sources on grid-tied inverter output, especially near the resonant frequency of the inverter's filter, is unknown. In this study, a comprehensive harmonic model of the grid-tied inverter is presented by considering all three types of external sources. The proposed model can be utilised for low and high-frequency harmonic emission of grid-connected inverters. A new analytical expression is introduced as an indicator of the maximum possible individual grid current harmonic in the case of harmonic injection of multiple external sources. The impact of series damping resistor on harmonic rejection ability of the inverter is analysed at the range of frequencies around resonance. The simulation and experimental results fulfil the proposed harmonic model of the inverter.


    1. 1)
      • 31. Reznik, A., Simões, M.G., Al-Durra, A., et al: ‘LCL filter design and performance analysis for grid-interconnected systems’, IEEE Trans. Ind. Appl., 2014, 50, (2), pp. 12251232.
    2. 2)
      • 7. Kumar, D., Zare, F.: ‘Harmonic analysis of grid connected power electronic systems in low voltage distribution networks’, IEEE J. Emerging Sel. Top. Power Electron., 2016, 4, (1), pp. 7079.
    3. 3)
      • 13. Soltani, H., Davari, P., Zare, F., et al: ‘Effects of modulation techniques on the input current interharmonics of adjustable speed drives’, IEEE Trans. Ind. Electron., 2018, 65, (1), pp. 167178.
    4. 4)
      • 28. Rönnberg, S.K., Bollen, M.H., Amaris, H., et al: ‘On waveform distortion in the frequency range of 2 kHz–150 kHz – review and research challenges’, Electr. Power Syst. Res., 2017, 150, pp. 110. Available from:
    5. 5)
      • 1. Islam, M., Afrin, N., Mekhilef, S.: ‘Efficient single phase transformerless inverter for grid-tied PVG system with reactive power control’, IEEE Trans. Sustain. Energy, 2016, 7, (3), pp. 12051215.
    6. 6)
      • 29. Bakshi, U., Bakshi, V.: ‘Principles of control systems’ (Technical Publications, India, 2009).
    7. 7)
      • 5. Wu, Y., Ye, Y., Zhao, Q., et al: ‘Discrete-time modified ude-based current control for LCL-type grid-tied inverters’, IEEE Trans. Ind. Electron., 2019, 67, (3), pp. 21432154.
    8. 8)
      • 18. Rathnayake, H., Khajeh, K.G., Zare, F., et al: ‘Harmonic analysis of grid-tied active front end inverters for the frequency range of 0-9 kHz in distribution networks: addressing future regulations’. 2019 IEEE Int. Conf. on Industrial Technology (ICIT), Melbourne, Australia, February 2019, pp. 446451.
    9. 9)
      • 4. Holmes, D.G., Lipo, T.A.: ‘Modulation of one inverter phase leg’, 2003. Available from:
    10. 10)
      • 9. Lin, Z., Chen, Z., Yajuan, L., et al: ‘Phase-reshaping strategy for enhancing grid-connected inverter robustness to grid impedance’, IET Power Electron., 2018, 11, (8), pp. 14341443.
    11. 11)
      • 30. Kouchaki, A., Nymand, M.: ‘Analytical design of passive LCL filter for three-phase two-level power factor correction rectifiers’, IEEE Trans. Power Electron., 2018, 33, (4), pp. 30123022.
    12. 12)
      • 20. Xie, B., Zhou, L., Mao, M.: ‘Analysis of resonance and harmonic amplification for grid-connected inverters’, IET Gener., Transm. Distrib., 2019, 13, (10), pp. 18211828.
    13. 13)
      • 8. Solatialkaran, D., Zare, F., Saha, T.K., et al: ‘A novel approach in filter design for grid-connected inverters used in renewable energy systems’, IEEE Trans. Sustain. Energy, 2018, 11, (1), pp. 154164.
    14. 14)
      • 2. Panda, K.P., Panda, G.: ‘Application of swarm optimisation-based modified algorithm for selective harmonic elimination in reduced switch count multilevel inverter’, IET Power Electron., 2018, 11, (8), pp. 14721482.
    15. 15)
      • 23. Shen, L., Bozhko, S., Asher, G., et al: ‘Active dc-link capacitor harmonic current reduction in two-level back-to-back converter’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 69476954.
    16. 16)
      • 16. Rehman, T., Yaghoobi, J., Zare, F.: ‘Harmonic issues in future grids with grid connected solar inverters: 0–9 kHz’. 2018 Australasian Universities Power Engineering Conf. (AUPEC), Auckland, New Zealand, 2018, pp. 16.
    17. 17)
      • 22. Pei, X., Zhou, W., Kang, Y.: ‘Analysis and calculation of dc-link current and voltage ripples for three-phase inverter with unbalanced load’, IEEE Trans. Power Electron., 2015, 30, (10), pp. 54015412.
    18. 18)
      • 10. Memon, M.A., Mekhilef, S., Mubin, M.: ‘Selective harmonic elimination in multilevel inverter using hybrid apso algorithm’, IET Power Electron., 2018, 11, (10), pp. 16731680.
    19. 19)
      • 25. Kieferndorf, F.D., Forster, M., Lipo, T.A.: ‘Reduction of dc bus capacitor ripple current with PAM/PWM converter’. Conf. Record of the 2002 IEEE Industry Applications Conf. 37th IAS Annual Meeting (Cat. No.02CH37344), Genova, Italy, vol. 4, 2002, pp. 23712377.
    20. 20)
      • 27. Karimi-Ghartemani, M.: ‘Linear and pseudolinear enhanced phased-locked loop (EPLL) structures’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 14641474.
    21. 21)
      • 32. Kahlane, A., Hassaine, L., Kherchi, M.: ‘LCL filter design for photovoltaic grid connected systems’, J. Renew. Energies, 2014, pp. 227232.
    22. 22)
      • 19. Rathnayake, H., Solatialkaran, D., Zare, F., et al: ‘Grid-tied inverters in renewable energy systems: harmonic emission in 2 to 9 kHz frequency range’. 2019 21st European Conf. on Power Electronics and Applications (EPE ‘19 ECCE Europe, Genova, Italy, 2019, pp. 110.
    23. 23)
      • 24. Li, Q., Jiang, D.: ‘Dc-link current analysis of three-phase 2l-VSI considering ac current ripple’, IET Power Electron., 2018, 11, (1), pp. 202211.
    24. 24)
      • 12. Rönnberg, S., Gil De Castro, A., Medina Gracia, R.: ‘Supraharmonics in European and North American low-voltage networks’. 2018 IEEE Int. Conf. on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Palermo, Italy, June 2018, pp. 16.
    25. 25)
      • 14. Agudelo-Martínez, D., Limas, M., Pavas, A., et al: ‘Supraharmonic bands detection for low voltage devices’. 2016 17th Int. Conf. on Harmonics and Quality of Power (ICHQP), Belo Horizonte, Brazil, 2016, pp. 10031009.
    26. 26)
      • 17. Yaghoobi, J., Zare, F., Rehman, T., et al: ‘Analysis of high frequency harmonics in distribution networks: 9–150 kHz’. 2019 IEEE Int. Conf. Industrial Technology (ICIT), Melbourne, Australia, February 2019, pp. 12291234.
    27. 27)
      • 15. Zare, F., Soltani, H., Kumar, D., et al: ‘Harmonic emissions of three-phase diode rectifiers in distribution networks’, IEEE Access, 2017, 5, pp. 28192833.
    28. 28)
      • 6. Arab, N., Vahedi, H., Al-Haddad, K.: ‘LQR control of single-phase grid-tied PUC5 inverter with LCL filter’, IEEE Trans. Ind. Electron., 2020, 67, pp. 297307.
    29. 29)
      • 26. Xu, J., Qian, Q., Zhang, B., et al: ‘Harmonics and stability analysis of single-phase grid-connected inverters in distributed power generation systems considering phase-locked loop impact’, IEEE Trans. Sustain. Energy, 2019, 10, (3), pp. 14701480.
    30. 30)
      • 21. Zhao, T., Zhang, X., Mao, W., et al: ‘An optimized third harmonic compensation strategy for single-phase cascaded H-bridge photovoltaic inverter’, IEEE Trans. Ind. Electron., 2018, 65, (11), pp. 86358645.
    31. 31)
      • 3. Heydt, G.T.: ‘The next generation of power distribution systems’, IEEE Trans. Smart Grid, 2010, 1, (3), pp. 225235.
    32. 32)
      • 11. Goh, H., Armstrong, M., Zahawi, B.: ‘Adaptive control technique for suppression of resonance in grid-connected PV inverters’, IET Power Electron., 2019, 12, (6), pp. 14791486.

Related content

This is a required field
Please enter a valid email address