Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Orthogonal laminated magnetic integrated coupler for the wireless charging system with multiple power transfer channels

Aiming at the problems of the existing magnetic couplers used by wireless charging system (WCS) with multiple power transfer channels, this study presents an investigation into the use of magnetic integration technique and orthogonal decoupling method to design an orthogonal laminated magnetic integrated coupler with SDDD-MIOC (square, Double D (DD), and magnetic integrated overlap coils). Firstly, the concept of SDDD-MIOC is proposed to solve the key issues of the existing magnetic couplers. Then, the operating principle and design method of the proposed SDDD-MIOC are illustrated. Secondly, the coupling performance and electric characteristics of the designed magnetic integrated coupler with SDDD-MIOC are analysed in-depth. Finally, both experimental and simulation results verify that the designed magnetic integrated coupler with SDDD-MIOC helps the WCS with three power transfer channels to achieve the low component voltage or current stress, high space utilisation, good power expansion ability, and high system fault-tolerant ability.

References

    1. 1)
      • 10. Kim, J., Lee, B., Lee, J., et al: ‘Development of 1-MW inductive power transfer system for a high-speed train’, IEEE Trans. Ind. Electron., 2015, 62, (10), pp. 62426250.
    2. 2)
      • 2. Li, S., Mi, C.C.: ‘Wireless power transfer for electric vehicle applications’, IEEE J. Emerg. Sel. Top. Power Electron., 2015, 3, (1), pp. 417.
    3. 3)
      • 7. Deng, J.J., Li, W., Nguyen, T.D., et al: ‘Compact and efficient bipolar coupler for wireless power chargers: design and analysis’, IEEE Trans. Power Electron., 2015, 30, (11), pp. 61306140.
    4. 4)
      • 1. Hui, S.Y.R., Zhang, W., Lee, C.K., et al: ‘A critical review of recent progress in mid-range wireless power transfer’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 45004511.
    5. 5)
      • 19. Li, M.X., Ouyang, Z.W., Andersen, M.A.E., et al: ‘High-frequency LLC resonant converter with magnetic shunt integrated planar transformer’, IEEE Trans. Power Electron., 2019, 34, (3), pp. 24052415.
    6. 6)
      • 15. Liu, C., Xu, X., He, D.C., et al: ‘Magnetic-coupling current-balancing cells based input-parallel output-parallel LLC resonant converter modules for high-frequency isolation of DC distribution systems’, IEEE Trans. Power Electron., 2016, 31, (10), pp. 69686979.
    7. 7)
      • 17. Ahn, D., Hong, S.: ‘Effect of coupling between multiple transmitters or multiple receivers on wireless power transfer’, IEEE Trans. Ind. Electron., 2013, 60, (7), pp. 26022613.
    8. 8)
      • 6. Vu, V.B., Phan, V.T., Dahidah, M., et al: ‘Multiple output inductive charger for electric vehicles’, IEEE Trans. Power Electron., 2015, 30, (11), pp. 73507368.
    9. 9)
      • 8. Zaheer, A., Beh, H.Z., Covic, G.A.: ‘A dynamic EV charging system for slow moving traffic applications’, IEEE Trans. Transp. Electri., 2017, 3, (2), pp. 354369.
    10. 10)
      • 12. Rim, C.T.: ‘The development and deployment of online electric vehicles (OLEV)’. Proc. IEEE Energy Conversion Congress and Exposition (ECCE), Denver, CO, USA, 2013.
    11. 11)
      • 4. Madawala, U.K., Thrimawithana, D.J.: ‘Modular-based inductive power transfer system for high-power applications’, IET Power Electron., 2013, 5, pp. 11191126.
    12. 12)
      • 9. Xiang, L.J., Li, X.Y., Tian, J.D., et al: ‘A crossed DD geometry and its double-coil excitation method for electric vehicle dynamic wireless charging systems’, IEEE Access, 2018, 6, pp. 4512045128.
    13. 13)
      • 5. Hao, H., Covic, G.A., Boys, J.T.: ‘A parallel topology for inductive power transfer power supplies’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 11401151.
    14. 14)
      • 16. Shu, L.C., Chen, W., Jiang, X.J., et al: ‘Decentralized control for fully modular input-series output-parallel (ISOP) inverter system based on the active power inverse-droop method’, IEEE Trans. Power Electron., 2018, 33, (9), pp. 75217530.
    15. 15)
      • 13. Nguyen, M.Q., Chou, Y., Plesa, D., et al: ‘Multiple-inputs and multiple-outputs wireless power combining and delivering systems’, IEEE Trans. Power Electron., 2015, 30, (11), pp. 62546263.
    16. 16)
      • 11. Choi, S.Y., Gu, B.W., Jeong, S.Y., et al: ‘Advances in wireless power transfer systems for roadway-powered electric vehicles’, IEEE J. Emerg. Sel. Top. Power Electron., 2015, 3, (1), pp. 1836.
    17. 17)
      • 18. Li, Y., Mai, R.K., Lu, L.W., et al: ‘Analysis and transmitter currents decomposition based control for multiple overlapped transmitters based WPT systems considering cross couplings’, IEEE Trans. Power Electron., 2018, 33, (2), pp. 18291842.
    18. 18)
      • 3. Chen, L., Liu, S., Zhou, Y.C., et al: ‘An optimizable circuit structure for high-efficiency wireless power transfer’, IEEE Trans. Ind. Electron., 2013, 60, (1), pp. 339349.
    19. 19)
      • 14. Shijo, T., Ogawa, K., Suzuki, M., et al: ‘EMI reduction technology in 85 kHz band 44 kW wireless power transfer system for rapid contactless charging of electric bus’. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 2016, pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.1315
Loading

Related content

content/journals/10.1049/iet-pel.2019.1315
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address