Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Reduced voltage stress hybrid multilevel inverter using optimised predictive control

This study presents a hybrid multilevel inverter (HMLI), capable of generating 19 voltage levels using a single DC voltage source. The peak inverse voltage of all the switches is restrained within the input DC source voltage in the proposed HMLI, which requires only three capacitors and 15 switches to achieve 19 voltage levels. In the proposed HMLI, one of the capacitors is self-balanced, while the other two capacitors are balanced using a modified finite control set model predictive control (MFCS-MPC). The proposed MFCS-MPC reduces the computation time considerably without affecting the performance of the system. The proposed HMLI is compared with some other HMLI topologies to show its merits in terms of active and passive components. Finally, the steady-state and dynamic performance of the proposed topology and its control algorithm is validated through simulation and experimentation for a 1 kW prototype.

References

    1. 1)
      • 26. Xu, S., Zhang, J., Hu, X., et al: ‘A novel hybrid five-level voltage-source converter based on T-type topology for high-efficiency applications’, IEEE Trans. Ind. Appl., 2017, 53, (5), pp. 47304743.
    2. 2)
      • 21. Chowdhury, S., Wheeler, P., Huang, Z., et al: ‘Fixed switching frequency predictive control of an asymmetric source dual inverter system with a floating bridge for multilevel operation’, IET Power Electron., 2019, 3, (12), pp. 450457.
    3. 3)
      • 19. Wang, X., Zou, J., Ma, L., et al: ‘Model predictive control methods of leakage current elimination for a three-level T-type transformerless PV inverter’, IET Power Electron., 2018, 8, (11), pp. 14921498.
    4. 4)
      • 4. Edpuganti, A., Rathore, A.K.: ‘Fundamental switching frequency optimal pulse width modulation of Medium-voltage cascaded seven-level inverter’, IEEE Trans. Ind. Appl., 2015, 4, (51), pp. 34853492.
    5. 5)
      • 25. Jammala, V., Yellasiri, S., Panda, A.K.: ‘Development of a new hybrid multilevel inverter using modified carrier SPWM switching strategy’, IEEE Trans. Power Electron., 2018, 33, (10), pp. 81928197.
    6. 6)
      • 28. Behara, S., Sandeep, N., Udaykumar, R.Y.: ‘Transformer-based seven-level inverter with single-dc supply for renewable energy applications’. 2016 7th Int. Conf. on Power Electronics (IICPE), Patiala, India, 2016, pp. 16.
    7. 7)
      • 12. Rojas, C.A., Aguirr, M., Kouro, S., et al: ‘Leakage current mitigation in photovoltaic string inverter using predictive control with fixed average switching frequency’, IEEE Trans. Ind. Electron., 2017, 12, (64), pp. 93449354.
    8. 8)
      • 2. Malinowski, M., Gopakumar, K., Pou, J.: ‘Recent advances and industrial applications of multilevel converters’, IEEE Trans. Ind. Electron., 2010, 8, (57) pp. 25532580.
    9. 9)
      • 27. Hota, A., Jain, S., Agarwal, V.: ‘An optimized three-phase multilevel inverter topology with separate level and phase sequence generation part’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 74147418.
    10. 10)
      • 9. Veenstra, M., Rufer, A.: ‘Control of a hybrid asymmetric multi-level inverter for competitive medium-voltage industrial drives’, IEEE Trans. Ind. Appl., 2005, 2, (41), pp. 655664.
    11. 11)
      • 15. Geyer, T., Mastellone, S.: ‘Model predictive direct torque control of a five-level NPC converter drive system’, IEEE Trans. Ind. Appl., 2015, 5, (48), pp. 15651575.
    12. 12)
      • 23. Liu, J., Wu, J., Zeng, J..: ‘A novel nine-level inverter employing one voltage source and reduced components as high-frequency AC power source’, IEEE Trans. Power Electron., 2017, 32, (4), pp. 29392947.
    13. 13)
      • 8. Gautam, S.P., Kumar, L., Gupta, S.: ‘Hybrid topology of symmetrical multilevel inverter using less number of devices’, IET Power Electron., 2015, 11, (8), p. 21252135.
    14. 14)
      • 5. Guo, X., Cavalcanti, M.C., Farias, A.M., et al: ‘Single carrier modulation for neutral point clamped inverters in three-phase transformer less photovoltaic systems’, IEEE Trans. Power Electron., 2013, 28, (6), pp. 34853492.
    15. 15)
      • 18. Gutierrez, E., Kouro, S., Rojas, C., et al: ‘Predictive control of an H-NPC converter for single-phase rooftop photovoltaic systems’. Proc. IEEE Energy Conversion Congr. Exposition, Montreal, QC, Canada, 2015, pp. 32953302.
    16. 16)
      • 14. Acuña, P., Morán, L., Rivera, M., et al: ‘A single-objective predictive control method for a multivariable single phase three-level NPC converter-based active power filter’, IEEE Trans. Ind. Electron., 2015, 62, (7), pp. 45984607.
    17. 17)
      • 3. Cheng, Y., Crow, M.L.: ‘A diode-clamped multi-level inverter for the stat com/BESS’. Proc. IEEE Power Engineering Society Winter Meeting, New York, NY, USA, 2002, pp. 470475.
    18. 18)
      • 7. Karasani, R.R., Borghate, V.B., Meshram, P.M., et al: ‘A three-phase hybrid cascaded modular multilevel inverter for renewable energy environment’, IEEE Trans. Power Electron., 2017, 2, (32), pp. 10701087.
    19. 19)
      • 22. He, L., Cheng, C.: ‘A bridge modular switched-capacitor-based multilevel inverter with optimized SPWM control method and enhanced power decoupling ability’, IEEE Trans. Ind. Electron., 2018, 65, (8), pp. 61406149.
    20. 20)
      • 20. Dong, K., Shi, T., Xiao, S., et al: ‘Finite set model predictive control method for quasi-Z source inverter-permanent magnet synchronous motor drive system’, IET Electr. Power Appl., 2018, 3, (13), pp. 302309.
    21. 21)
      • 11. Barros, J.D., Silva, J.F.A., Jesus, G.A.: ‘Fast-predictive optimal control of NPC multilevel converters’, IEEE Trans. Ind. Inf., 2013, 2, (60), pp. 619627.
    22. 22)
      • 24. Rosas-Caro, J.C., Mayo-Maldonado, J.C., Mancilla-David, F.: ‘Single inductor resonant switched capacitor voltage multiplier with safe commutation’, IET Power Electron., 2015, 8, (4), pp. 507516.
    23. 23)
      • 29. Banaei, M. R., Khounjahan, H., Salary, E.: ‘Single-source cascaded transformers multilevel inverter with reduced number of switches’, IET Power Electron., 2012, 5, (9), pp. 17481753.
    24. 24)
      • 16. Guo, X., He, R., Jian, J., et al: ‘Leakage current elimination of four-leg inverter for transformerless three-phase PV systems’, IEEE Trans. Power Electron., 2016, 3,(31), pp. 18411846.
    25. 25)
      • 13. Kwak, S., Mun, S.: ‘Model predictive control methods to reduce common mode voltage for three-phase voltage source inverters’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 50195035.
    26. 26)
      • 10. Zhang, Y., Adam, G.P., Lim, T.C., et al: ‘Hybrid multilevel converter: capacitor voltage balancing limits and its extension’, IEEE Trans. Ind. Inf., 2013, 4, (9), pp. 20632073.
    27. 27)
      • 1. Ruderman, A.: ‘About voltage total harmonic distortion for single- and three-phase multilevel inverters’, IEEE Trans. Ind. Electron., 2015, 3, (62), pp. 15481551.
    28. 28)
      • 17. Judewicz, M.G., González, S.A., Fischer, J.R., et al: ‘Inverter-side current control of grid-connected voltage source inverters with LCL filter based on generalized predictive control’, IEEE J. Emerg. Sel. Top. Power Electron., 2018, 4, (6), pp. 17321743.
    29. 29)
      • 6. Du, Z., Tolbert, L.M., Ozpineci, B., et al: ‘Fundamental frequency switching strategies of a seven-level hybrid cascaded H-bridge multilevel inverter’, IEEE Trans. Power Electron., 2009, 1, (24), pp. 2533.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.1314
Loading

Related content

content/journals/10.1049/iet-pel.2019.1314
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address