access icon free High step-up DC/DC converters based on coupled inductor and switched capacitors

This study proposes a series of high step-up DC/DC converters based on the coupled inductor and switched capacitors. The priority of the switched capacitor connection methods of the converters is presented by their contributions to the voltage gain so that the converters can be selected optimally according to the gain demand. For this converter, the voltage gain can be adjusted by both of the turns ratios of the coupled inductor and the number of switched-capacitor units. It makes it possible to further improve the voltage gain when the turns ratio of the coupled inductor is rather high. Moreover, the introduction of switched capacitors can reduce the voltage stress of power components. In this study, the operating principle and performance characteristics of the converters are analysed. Also, a 300 W prototype is set up for verification. The experimental results demonstrate the effect of the theoretical analysis and superiority of the converter.

Inspec keywords: inductors; DC-DC power convertors; capacitors

Other keywords: coupled inductor; turns ratio; switched-capacitor units; switched capacitor connection methods; power 300.0 W; high step-up DC/DC converters; voltage gain

Subjects: Inductors and transformers; Capacitors; Power electronics, supply and supervisory circuits; DC-DC power convertors

References

    1. 1)
      • 16. Lai, C.M., Liao, Y.H.: ‘Modeling, analysis, and design of an interleaved four-phase current-fed converter with new voltage multiplier topology’, IEEE Trans. Ind. Appl., 2013, 49, (1), pp. 208222.
    2. 2)
      • 12. Salvador, M.A., Lazzarin, T.B., Coelho, R.F.: ‘High step-up DC–DC converter with active switched-inductor and passive switched-capacitor networks’, IEEE Trans. Ind. Electron., 2018, 65, (7), pp. 56445654.
    3. 3)
      • 24. Hsieh, Y.P., Chen, J.F., Liang, T.J.: ‘Novel high step-up DC–DC converter with coupled-inductor and switched-capacitor techniques’, IEEE Trans. Ind. Electron., 2012, 59, (2), pp. 9981007.
    4. 4)
      • 26. Moradpour, R., Ardi, H., Tavakoli, A.: ‘Design and implementation of a new SEPIC-based high step-up DC/DC converter for renewable energy applications’, IEEE Trans. Ind. Electron., 2018, 65, (2), pp. 12901297.
    5. 5)
      • 20. Zhao, Y., Li, W., Deng, Y., et al: ‘High step-up boost converter with passive lossless clamp circuit for non-isolated high step-up applications’, IET Power Electron., 2011, 4, (8), pp. 851859.
    6. 6)
      • 31. Li, X., Zhang, Y., Liu, J.: ‘High step-up DC–DC converter based on multi-cell coupled inductor diode–capacitor network’. 2018 Int. Power Electronics Conf., Niigata, Japan, 2018, pp. 26462652.
    7. 7)
      • 17. Himmelstoss, F.A., Wurm, P.H.: ‘Low-loss converters with high step-up conversion ratio working at the border between continuous and discontinuous mode’. IEEE Int. Conf. on Electronics, Jounieh, Lebanon, 2000, pp. 734737.
    8. 8)
      • 2. Tofoli, F.L., Pereira, D.C., Paula, W.J., et al: ‘Survey on non-isolated high-voltage step-up dc–dc topologies based on the boost converter’, IET Power Electron., 2015, 8, (10), pp. 20442057.
    9. 9)
      • 1. Rajaei, A., Khazan, R., Mahmoudian, M., et al: ‘A dual inductor high step-up DC/DC converter based on the Cockcroft–Walton multiplier’, IEEE Trans. Power Electron., 2018, 33, (11), pp. 96999709.
    10. 10)
      • 29. Torkan, A., Ehsani, M.: ‘A novel nonisolated z-source DC–DC converter for photovoltaic applications’, IEEE Trans. Ind. Appl., 2018, 54, (5), pp. 45744583.
    11. 11)
      • 4. Moury, S., Lam, J.: ‘New soft-switched high frequency multi-input step-up/down converters for high voltage DC-distributed hybrid renewable systems’. IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 2017, pp. 55375544.
    12. 12)
      • 22. Park, K.B., Moon, G.W., Youn, M.J.: ‘Nonisolated high step-up stacked converter based on boost-integrated isolated converter’, IEEE Trans. Power Electron., 2011, 26, (2), pp. 577587.
    13. 13)
      • 14. Pan, C.T., Chuang, C.F., Chu, C.C.: ‘A novel transformer-less adaptable voltage quadrupler DC converter with low switch voltage stress’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 47874796.
    14. 14)
      • 21. Wu, G., Ruan, X.B., Ye, Z.H.: ‘High step-up DC–DC converter based on switched capacitor and coupled inductor’, IEEE Trans. Power Electron., 2018, 65, (7), pp. 55725579.
    15. 15)
      • 27. Ai, J., Lin, M.: ‘High step-up DC–DC converter with low power device voltage stress for a distributed generation system’, IET Power Electron., 2018, 16, (10), pp. 19551963.
    16. 16)
      • 6. Faraji, R., Farzanehfard, H.: ‘Soft-switched nonisolated high step-up three-port DC–DC converter for hybrid energy systems’, IEEE Trans. Power Electron., 2018, 33, (12), pp. 1010110111.
    17. 17)
      • 13. He, L., Zheng, Z.: ‘High step-up DC–DC converter with switched-capacitor and its zero-voltage switching realisation’, IET Power Electron., 2017, 10, (6), pp. 630636.
    18. 18)
      • 23. Liang, T.J., Chen, S.M., Yang, L.S., et al: ‘Ultra-large gain step-up switched-capacitor DC–DC converter with coupled inductor for alternative sources of energy’, IEEE Trans. Circuits Syst.., 2012, 59, (4), pp. 864874.
    19. 19)
      • 8. Varesi, K., Hosseini, S.H., Sabahi, M., et al: ‘Modular non-isolated multi-input high step-up dc–dc converter with reduced normalised voltage stress and component count’, IET Power Electron., 2015, 11, (6), pp. 10921100.
    20. 20)
      • 11. Tang, Y., Wang, T., Fu, D.: ‘Multicell switched-inductor/switched-capacitor combined active-network converters’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 20632072.
    21. 21)
      • 15. Zhou, L.W., Zhu, B.X., Luo, Q.M., et al: ‘Interleaved non-isolated high step-up DC/DC converter based on the diode–capacitor multiplier’, IET Power Electron., 2014, 7, (2), pp. 390397.
    22. 22)
      • 30. Poorali, B., Jazi, H.M., Adib, E.: ‘Improved high step-up z-source DC–DC converter with single core and ZVT operation’, IEEE Trans. Power Electron., 2018, 33, (11), pp. 96479655.
    23. 23)
      • 32. Hsieh, Y.P., Chen, J.F., Liang, T.J.: ‘Novel high step-up DC-DC converter with coupled-inductor and switched-capacitor techniques for a sustainable energy system’, IEEE Trans. Power Electron., 2011, 26, (12), pp. 34813490.
    24. 24)
      • 5. Mohseni, P., Hosseini, S.H., Sabahi, M., et al: ‘A new high step-up multi-input multi-output DC–DC converter’, IEEE Trans. Ind. Electron., 2019, 66, (7), pp. 51975208.
    25. 25)
      • 10. Choudhury, T.R., Nayak, B., Santra, S.B.: ‘A novel switch current stress reduction technique for single switch boost-flyback integrated high step up DC–DC converter’, IEEE Trans. Ind. Electron., 2019, 66, (9), pp. 68766886.
    26. 26)
      • 19. Wu, T.F., Lai, Y.S., Hung, J.C., et al: ‘Boost converter with coupled inductors and buck–boost type of active clamp’, IEEE Trans. Ind. Electron., 2008, 55, (1), pp. 154162.
    27. 27)
      • 7. Yu, D.S., Yang, J., Xu, R.D., et al: ‘A family of module-integrated high step-up converters with dual coupled inductors’, IEEE Access, 2018, 6, pp. 1625616266.
    28. 28)
      • 35. Akhlaghi, B., Molavi, N., Fekri, M., et al: ‘High step-up interleaved ZVT converter with low voltage stress and automatic current sharing’, IEEE Trans. Ind. Electron., 2018, 65, (1), pp. 291299.
    29. 29)
      • 25. Hasanpour, S., Baghramian, A., Mojallali, H.: ‘A modified SEPIC-based high step-up DC–DC converter with quasi-resonant operation for renewable energy applications’, IEEE Trans. Ind. Electron., 2019, 66, (5), pp. 35393549.
    30. 30)
      • 3. Forouzesh, M., Shen, Y., Yari, K., et al: ‘High-efficiency high step-up DC–DC converter with dual coupled inductors for grid-connected photovoltaic systems’, IEEE Trans. Power Electron., 2018, 33, (7), pp. 59675982.
    31. 31)
      • 33. Andrade, A.M.S.S., Mattos, E., Schuch, L., et al: ‘Synthesis and comparative analysis of very high step-up DC–DC converters adopting coupled-inductor and voltage multiplier cells’, IEEE Trans. Power Electron., 2018, 33, (7), pp. 58805897.
    32. 32)
      • 18. Fohringer, J.P., Himmelstoss, F.A.: ‘Analysis of a boost converter with tapped inductor and reduced voltage stress across the buffer capacitor’. 2006 IEEE Int. Conf. on Industrial Technology, 2006, pp. 126131.
    33. 33)
      • 9. Lee, S.W., Do, H.L.: ‘Quadratic boost DC–DC converter with high voltage gain and reduced voltage stresses’, IEEE Trans. Power Electron., 2019, 34, (3), pp. 23972404.
    34. 34)
      • 28. He, L.Z., Zheng, Z.P.: ‘High step-up DC-DC converter with active soft-switching and voltage-clamping for renewable energy systems’, IEEE Trans. Power Electron., 2018, 33, (11), pp. 94969505.
    35. 35)
      • 34. Andrade, A.M.S.S., Schuch, L., Martins, M.L.S.: ‘Analysis and design of high-efficiency hybrid high step-up DC–DC converter for distributed PV generation systems’, IEEE Trans. Ind. Electron., 2019, 66, (5), pp. 38603868.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.1264
Loading

Related content

content/journals/10.1049/iet-pel.2019.1264
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading