Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free 10 MHz boost converter with subthreshold voltage startup and predictive dead-time techniques for energy-harvesting systems

A 10 MHz synchronous boost converter with the subthreshold startup scheme and predictive dead-time control for energy-harvesting systems is presented in this study. The input feed-forward technique is adopted to achieve a fast line response, and a three-stage startup technique is proposed to realise subthreshold voltage startup without using any extra startup circuits or special devices. Moreover, the efficiency of the high-frequency converter can be improved by the proposed predictive dead-time control with a high resolution of ∼300 ps. The proposed converter is implemented in a standard 0.18 μm complimentary metal oxide semiconductor process and occupies a die area of 1.4 × 1.5 mm2. Experimental results show that the input voltage ranges from 0.3 to 1.5 V at 1.8 V output, and the minimum startup voltage is 0.3 V. Under V IN = 1.5 V, V OUT = 1.8 V and 150 mA load, the power efficiency can be improved by 2.6% because of the proposed predictive dead-time control. The peak efficiency can reach 90.7% under V IN = 1.5 V. The line transient response can be improved with small overshoot voltage at the output.

References

    1. 1)
      • 24. Schirone, L., Macellari, M., Pellitteri, F.: ‘Predictive dead-time controller for GaN-based boost converters’, IET Power Electron., 2017, 10, (4), pp. 421428.
    2. 2)
      • 15. Wang, Y.K., Ma, D.S.: ‘A 450-mV single-fuel-cell power management unit with switch-mode Quasi-V2 hysteretic control and automatic startup on 0.35-μm standard CMOS process’, IEEE J. Solid-State Circuits, 2012, 47, (9), pp. 22162226.
    3. 3)
      • 19. Huang, H.W., Ho, H.H., Chien, C.C., et al: ‘Dithering skip modulator with a width controller for ultra-wide-load high-efficiency DC-DC converters’. IEEE Custom Integrated Circuits Conf., San Jose, CA, USA, September 2006.
    4. 4)
      • 28. Lima, J.A.D., Pimenta, W.A.: ‘A gm-C ramp generator for voltage feed-forward control of DC-DC switching regulators’. IEEE. Int. Symp. Circuits and Systems, New Orleans, LA, USA, May 2007.
    5. 5)
      • 16. Wu, H.H., Wei, C.L., Hsu, Y.C., et al: ‘Adaptive peak-inductor-current-controlled PFM boost converter with a near-threshold startup voltage and high efficiency’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 19561965.
    6. 6)
      • 12. Bose, S., Anand, T., Johnston, M.L.: ‘Integrated cold start of a boost converter at 57 mV using cross-coupled complementary charge pumps and ultra-low-voltage ring oscillator’, IEEE J. Solid-State Circuits, 2019, 54, (10), pp. 28672878.
    7. 7)
      • 27. Yao, C., Ruan, X.B., Wang, X.H.: ‘Automatic mode-shifting control strategy with input voltage feed-forward for full-bridge-boost DC-DC converter suitable for wide input voltage range’, IEEE Trans. Power Electron., 2015, 30, (3), pp. 16681682.
    8. 8)
      • 32. Zhang, W.J., Leng, Y.H., Yu, J.S., et al: ‘Gate driver IC for enhancement mode GaN power transistors with senseFET reverse conduction detection circuit’, IET Power Electron., 2019, 12, (15), pp. 39283935.
    9. 9)
      • 22. Huang, H.W., Chen, K.H., Kuo, S.Y.: ‘Dithering skip modulation, width and dead-time controllers in highly efficient DC-DC converters for system-on-chip applications’, IEEE J. Solid-State Circuits, 2007, 42, (11), pp. 24512465.
    10. 10)
      • 23. Yonezawa, Y., Nakao, H., Sasaki, T., et al: ‘Digital dead-time control for two phase double-ended forward converter’. IEEE Int. Conf. Power Electronics and Drive Systems, Kitakyushu, Japan, April 2013.
    11. 11)
      • 1. Loo, K.H., Zhu, G.R., Lai, Y.M., et al: ‘Development of a maximum-power-point tracking algorithm for direct methanol fuel cell and its realization in a fuel cell supercapacitor hybrid energy system’. IEEE. Int. Conf. Power Electronics & ECCE Asia, Jeju, South Korea, May 2011, pp. 17531760.
    12. 12)
      • 8. Lim, B.M., Seo, J.I., Lee, S.G.: ‘A colpitts oscillator-based self-starting boost converter for thermoelectric energy harvesting with 40-mV startup voltage and 75% maximum efficiency’, IEEE J. Solid-State Circuits, 2018, 53, (11), pp. 32933302.
    13. 13)
      • 4. Nakase, Y., Hirose, S., Onoda, H., et al: ‘0.5 V start-up 87% efficiency 0.75 mm2 On-chip feed-forward single-inductor dual-output (SIDO) boost DC-DC converter for battery and solar cell operation sensor network micro-computer integration’, IEEE J. Solid-State Circuits, 2013, 48, (8), pp. 19331942.
    14. 14)
      • 18. Maity, A., Patra, A., Yamamura, N., et al: ‘Design of a 20 MHz DC-DC buck converter with 84 percent efficiency for portable applications’. IEEE. Int. Conf. VLSI Design, Chennai, India, January 2011.
    15. 15)
      • 13. Blanco, A.A., Rincon-Mora, G.A.: ‘A 44–93-μs 250–400-mV 0.18-μm CMOS starter for DC-sourced switched-inductor energy harvesters’, IEEE Trans. Circuits Syst. II, Express Briefs, 2014, 61, (12), pp. 10021006.
    16. 16)
      • 26. Cao, X., Chiang, W.J., King, Y.C., et al: ‘Electromagnetic energy harvesting circuit with feed-forward and feedback DC-DC PWM boost converter for vibration power generator system’, IEEE Trans. Power Electron., 2007, 22, (2), pp. 679685.
    17. 17)
      • 9. Ramadass, Y.K., Chandrakasan, A.P.: ‘A batteryless thermoelectric energy-harvesting interface circuit with 35 mV startup voltage’, IEEE J. Solid-State Circuits, 2011, 46, (1), pp. 333341.
    18. 18)
      • 20. Zhen, S., Bo, Z., Ping, L., et al: ‘A high efficiency synchronous buck converter with adaptive dead-time control for dynamic voltage scaling applications’. IEEE/IFIP Int. Conf. VLSI & System-on-Chip, Hong Kong, China, October 2011.
    19. 19)
      • 17. Du, M., Lee, H., Jin, L.: ‘A 5-MHz 91% peak-power-efficiency buck regulator with auto-selectable peak- and valley-current control’, IEEE J. Solid-State Circuits, 2010, 46, (8), pp. 19281939.
    20. 20)
      • 29. Lansley, S.: ‘Fundamentals of power electronics’ (Kluwer, Norwell, MA, USA, 2001).
    21. 21)
      • 25. Bao, Y., Wang, L.Y., Wang, C., et al: ‘Adaptive feed-forward compensation for voltage source disturbance rejection in DC-DC converters’, IEEE Trans. Control Syst. Technol., 2018, 26, (1), pp. 344351.
    22. 22)
      • 14. Wu, H.H., Chen, L.Y., Wei, C.L.: ‘Wide-input-voltage-range and high-efficiency energy harvester with a 155-mV startup voltage for solar power’. IEEE. Int. Conf. ESSCIRC, Leuven, Belgium, September 2017.
    23. 23)
      • 30. Chen, P.H., Ishida, K., Ikeuchi, K., et al: ‘A 95 mV-startup step-up converter with VTH-tuned oscillator by fixed-charge programming and capacitor pass-on scheme’. IEEE Int. Conf. Solid-state Circuits, San Francisco, CA, USA, February 2011.
    24. 24)
      • 5. Dalola, S., Ferrari, M., Ferrari, V., et al: ‘Characterization of thermoelectric modules for powering autonomous sensors’, IEEE Trans. Instrum. Meas., 2009, 58, (1), pp. 99107.
    25. 25)
      • 11. Tang, H.Y., Weng, P.S., Ku, P.C., et al: ‘A fully electrical startup batteryless boost converter with 50 mV input voltage for thermoelectric energy harvesting’. IEEE. Int. Conf. VLSI Circuits, Honolulu, HI, USA, June 2012.
    26. 26)
      • 7. Camarda, A., Tartagni, M., Romani, A.: ‘A −8 mV/+15 mV double polarity piezoelectric transformer-based step-up oscillator for energy harvesting applications’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2017, 65, (4), pp. 14571467.
    27. 27)
      • 6. ‘MPG-D75I’. Available at http://www.micropelt.com/down/datasheet_mpg_d651-_d751.pdf, accessed September 2015.
    28. 28)
      • 31. Chuang, L., Wu, C.C., Wang, W.H., et al: ‘A solar powered single-inductor dual-output (SIDO) DC-DC boost for power management unit system with high light-load efficiency’. IEEE Int. Symp. VLSI-DAT, Hsinchu, Taiwan, April 2017.
    29. 29)
      • 3. Win, K.K., Wu, X., Dasgupta, S., et al: ‘Efficient solar energy harvester for wireless sensor nodes’. IEEE Int. Conf. Communication Systems, Singapore, Singapore, November 2010.
    30. 30)
      • 2. Sarma, L.S., Chen, C.H., Wang, G.R., et al: ‘Investigations of direct methanol fuel cell (DMFC) fading mechanisms’, J. Power Sources, 2007, 167, (2), pp. 358365.
    31. 31)
      • 21. Yan, W., Pi, C., Li, W., et al: ‘Dynamic dead-time controller for synchronous buck DC-DC converters’, Electron. Lett., 2010, 46, (2), pp. 164165.
    32. 32)
      • 10. Chen, P.H., Zhang, X., Ishida, K., et al: ‘An 80 mV startup dual-mode boost converter by charge-pumped pulse generator and threshold voltage tuned oscillator with hot carrier injection’, IEEE J. Solid-State Circuits, 2012, 47, (11), pp. 25542562.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.1226
Loading

Related content

content/journals/10.1049/iet-pel.2019.1226
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address