Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Novel non-isolated high step-up converter with fewer passive devices and low voltage stress of power switches

High step-up, high-efficiency and cost-effective dc–dc converters with high power density, as an interface to boost the low voltage of alternative sources to the utility voltage level, are an important part of renewable energy systems. In this study, a novel high step-up converter is proposed with a switched-capacitor. By introducing the switched-capacitor unit in the converter, the voltage of the switched-capacitor is coupled into the charging circuit of the input filter-inductor. Thus, the boost factor can be enlarged up to (1 − 2D) and the problem of the inrush current can be avoided due to the filter inductor. By replacing the filter inductor with the voltage multiplier unit, the boost coefficient of one coupled inductor voltage multiplier is increased to 2n and the voltage stress of the power switch is significantly reduced. Moreover, the energy of the leakage inductor is recycled by the switched-capacitor with the reduction of the voltage spike and the switches’ stress. The working principle and the steady-state characteristics are analysed in detail in this study, and a comparison is made between the proposed converter and other high step-up converters. The experimental results based on a 200 W 20 to 200 V prototype verify the correctness and the feasibility.

References

    1. 1)
      • 2. Muhammad, M., Armstrong, M., Elgendy, M.A.: ‘A nonisolated interleaved boost converter for high-voltage gain applications’, IEEE J. Emerging Sel. Topics Power Electron., 2016, 4, (2), pp. 352362.
    2. 2)
      • 3. Schmitz, L., Martins, D.C., Coelho, R.F.: ‘Generalized high step-up DC-DC boost-based converter with gain cell’, IEEE Trans. Circuits Syst. I, Regul.Pap., 2017, 64, (2), pp. 480493.
    3. 3)
      • 29. Kang, I.H., Kim, S.C., Bahng, W., et al: ‘Accurate extraction method of reverse recovery time and stored charge for ultrafast diodes’, IEEE Trans. Power Electron., 2012, 2, (27), pp. 619622.
    4. 4)
    5. 5)
      • 27. Chen, Y., Lu, Z., Liang, R.: ‘Analysis and design of a novel high-step-up DC/DC converter with coupled inductors’, IEEE Trans. Power Electron., 2018, 1, (33), pp. 425436.
    6. 6)
      • 22. Amdrade, A.M.S.S., Guisso, R.A.: ‘Quasi-Z-source network DC-DC converter with different techniques to achieve a high voltage gain’, Electron. Lett., 2018, 54, (11), pp. 710712.
    7. 7)
      • 17. Lee, S., Do, H.: ‘Quadratic boost DC–DC converter with high voltage gain and reduced voltage stresses’, IEEE Trans. Power Electron., 2019, 34, (3), pp. 23972404.
    8. 8)
      • 15. Yang, N., Zeng, J., Cheng, X., et al: ‘An application of adaptive-capacitor-converter in improving the stability of the cascade system in DC-microgrid’. 2018 Chinese Automation Congress (CAC), Xi'an, China, 2018, pp. 11251129.
    9. 9)
      • 20. Arash, T., Mehrdad, E.: ‘A novel nonisolated Z-source DC-DC converter for photovoltaic applications’, IEEE Trans. Ind. Appl., 2018, 54, (5), pp. 45744583.
    10. 10)
      • 4. Abbasi, M., Babaei, E., Tousi, B.: ‘New family of non-isolated step-up/down and step-up switched-capacitor-based DC–DC converters’, IET Power Electron., 2019, 12, (7), pp. 17061720.
    11. 11)
      • 5. Zhu, B., Liu, S., Vilathgamuwa, D.M., et al: ‘High step-up SVMC-based DC/DC converter for offshore wind farms’, IET Power Electron., 2019, 12, (6), pp. 14451454.
    12. 12)
      • 7. Patel, A.: ‘An isolated step-up DC - DC converter using series connect sine amplitude converters’. 2015 IEEE Applied Power Electronics Conf. and Exposition (APEC), Charlotte, NC, 2015, pp. 11851189.
    13. 13)
      • 8. Sillapawicharn, Y.: ‘An isolated snubberless single-switched boost converter for high step-up conversion applications’. 2016 13th Int. Conf. on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Chiang Mai, 2016, pp. 14.
    14. 14)
      • 1. Salvador, M.A., Lazzarin, T.B., Coelho, R.F.: ‘High step-up DC–DC converter with active switched-inductor and passive switched-capacitor networks’, IEEE Trans. Ind. Electron., 2018, 65, (7), pp. 56445654.
    15. 15)
      • 12. Chang, Y., Lin, J.: ‘Modeling and implementation of high-gain coupled-inductor switched-capacitor step-up DC-DC converter’. 2018 3rd Int. Conf. on Control and Robotics Engineering (ICCRE), Nagoya, 2018, pp. 135138.
    16. 16)
      • 21. Poorali, B., Torkan, A., Adib, E.: ‘High step-up Z-source DC–DC converter with coupled inductors and switched capacitor cell’, IET Power Electron., 2015, 8, (8), pp. 13941402.
    17. 17)
      • 24. Liu, H., Li, F., Ai, J.: ‘A novel high step-up dual switches converter with coupled inductor and voltage multiplier cell for a renewable energy system’, IEEE Trans. Power Electron., 2016, 7, (31), pp. 49744983.
    18. 18)
      • 25. Ai, J., Lin, M.: ‘High step-up DC–DC converter with low power device voltage stress for a distributed generation system’, IET Power Electron., 2018, 12, (11), pp. 19551963.
    19. 19)
      • 10. Liu, H., Li, F.: ‘A novel high step-up converter with a quasi-active switched-inductor structure for renewable energy systems’, IEEE Trans. Power Electron., 2016, 31, (7), p. 1.
    20. 20)
      • 23. Ajami, A., Ardi, H., Farakhor, A.: ‘A novel high step-up DC/DC converter based on integrating coupled inductor and switched-capacitor techniques for renewable energy applications’, IEEE Trans. Power Electron., 2015, 8, (30), pp. 42554263.
    21. 21)
      • 9. Kwon, J.M., Choi, W.Y., Lee, J.J., et al: ‘Continuous-conduction-mode SEPIC converter with low reverse-recovery loss for power factor correction’, IEE Proc. Electr. Power Appl., 2006, 153, (5), pp. 673681.
    22. 22)
      • 13. Liu, J., Lin, W., Wu, J., et al: ‘A novel nine-level quadruple boost inverter with inductive-load ability’, IEEE Trans. Power Electron., 2019, 5, (34), pp. 40144018.
    23. 23)
      • 26. Forouzesh, M., Shen, Y., Yari, K., et al: ‘High-efficiency high step-up DC–DC converter with dual coupled inductors for grid-connected photovoltaic systems’, IEEE Trans. Power Electron., 2018, 7, (33), pp. 59675982.
    24. 24)
      • 19. Peng, F.Z.: ‘Z-source inverter’, IEEE Trans. Ind. Appl., 2003, 39, (2), pp. 504510.
    25. 25)
      • 18. Wang, Y., Qiu, Y., Bian, Q., et al: ‘A single switch quadratic boost high step Up DC–DC converter’, IEEE Trans. Ind. Electron., 2019, 66, (6), pp. 43874397.
    26. 26)
      • 14. Zhu, B., Ren, L., Wu, X.: ‘Kind of high step-up dc/dc converter using a novel voltage multiplier cell’, IET Power Electron., 2017, 1, (10), pp. 129133.
    27. 27)
      • 11. Salehi, S., Zahedi, N., Kheirollahi, R., et al: ‘Ultra high step-up DC-DC converter based on switched inductor-capacitor cells’. 2019 10th Int. Power Electronics, Drive Systems and Technologies Conf. (PEDSTC), Shiraz, Iran, 2019, pp. 367372.
    28. 28)
      • 28. Erickson, R.W., Maksimovic, D.: ‘Fundamentals of power electronics’ (Springer-Verlag, New York, NY, USA, 2000, 2nd edn.).
    29. 29)
      • 16. Li, F., Liu, H.: ‘A cascaded coupled inductor-reverse high step-up converter integrating three-winding coupled inductor and diode–capacitor technique’, IEEE Trans. Ind. Inf., 2017, 13, (3), pp. 11211130.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.1199
Loading

Related content

content/journals/10.1049/iet-pel.2019.1199
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address