access icon free Isolated boost converter based high step-up topologies for PV microinverter applications

In this study, a family of isolated boost DC–DC converters is proposed and evaluated. This family is built by the combination of an isolated current fed converter with high-voltage gain techniques. The evaluated cells are switched inductor, switched capacitors, reduced redundant power processing and a mixed of switched inductor and switched. So, the proposed family has four different isolated high step-up DC–DC converters. To evaluate this family, a comparative study of the significant features was performed. This study comprises features such as principle of operation, derivation of static voltage gain, current and voltage stress on the components, component stress factor, number of components, power losses, power density and cost. By these evaluations, the key features, limitations and restrictions of each converter were acknowledged. In this way, one can gather all the theoretical knowledge of each of the analysed converters and estimate which one will have better performance in the laboratory. To validate the theoretical analysis, four prototypes were built according to PV AC-module specifications 200 W.

Inspec keywords: invertors; photovoltaic power systems; DC-DC power convertors; power inductors

Other keywords: PV microinverter applications; high step-up topologies; evaluated cells; component stress factor; static voltage gain; reduced redundant power processing; high-voltage gain techniques; switched inductor; isolated boost converter; voltage stress; power 200.0 W; current stress; isolated high step-up DC–DC converters; isolated current fed converter; power density; switched capacitors; isolated boost DC–DC converters

Subjects: Transformers and reactors; Solar power stations and photovoltaic power systems; DC-DC power convertors; DC-AC power convertors (invertors)

References

    1. 1)
      • 20. Vinnikov, D., Chub, A., Liivik, E., et al: ‘Solar optiverter – a novel hybrid approach to the photovoltaic module level power electronics’, IEEE Trans. Ind. Electron., 2019, 66, (5), pp. 38693880.
    2. 2)
      • 33. Magmatec Catalog Magnetics, December 2017. Available at http://www.magmattec.com.
    3. 3)
      • 4. Muhammad, M., Armstrong, M., Elgendy, M.A.: ‘A nonisolated interleaved boost converter for high-voltage gain applications’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (2), pp. 352362.
    4. 4)
      • 16. Wu, H., Mu, T., Ge, H., et al: ‘Full-range soft-switching-isolated buck–boost converters with integrated interleaved boost converter and phase-shifted control’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 987999.
    5. 5)
      • 31. Liu, B., Teng, J., Lin, Y.: ‘Smart time-division-multiplexing control strategy for voltage multiplier rectifier’. 2016 IEEE/ACIS 15th Int. Conf. on Computer and Information Science (ICIS), Okayama, 2016, pp. 16.
    6. 6)
      • 3. Sun, Y., Liu, Y., Su, M., et al: ‘Review of active power decoupling topologies in single-phase systems’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 47784794.
    7. 7)
      • 34. Powder Core Catalog Magnetics, July 2016. Available at http://www.mag-inc.com.
    8. 8)
      • 2. Yilmaz, M., Krein, P.T.: ‘Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 21512169.
    9. 9)
      • 8. Kjaer, S.B., Pederson, J.K., Blaabjerg, F.: ‘A review of single-phase grid connected inverters for photovoltaic modules’, IEEE Trans. Ind. Appl., 2005, 41, (5), pp. 12921306.
    10. 10)
      • 13. Pan, X., Li, H., Liu, Y., et al: ‘An overview and comprehensive comparative evaluation of current-fed-isolated-bidirectional DC/DC converter’, IEEE Trans. Power Electron., 2020, 35, (3), pp. 27372763.
    11. 11)
      • 7. IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems, IEEE Standard 1547, 2003.
    12. 12)
      • 10. Singh, S.A., Carli, G., Azeez, N.A., et al: ‘Modeling design, control, and implementation of a modified Z-source integrated PV/grid/EV DC charger/inverter’, IEEE Trans. Ind. Electron., 2018, 65, (6), pp. 52135220.
    13. 13)
      • 9. Barater, D., Lorenzani, E., Concari, C., et al: ‘Recent advances in single-phase transformerless photovoltaic inverters’, IET Renew. Power Gener., 2016, 10, (2), pp. 260273.
    14. 14)
      • 22. Hu, Y., Wu, J., Cao, W., et al: ‘Ultrahigh step-up DC–DC converter for distributed generation by three degrees of freedom (3DoF) approach’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 49304941.
    15. 15)
      • 11. Stepanov, A.: ‘Galvanically isolated MPPT DC/DC converter for PV system tied to DC grid’. 2015 IEEE 3rd Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE), Riga, 2015, pp. 14.
    16. 16)
      • 18. Tseng, K., Chang, S., Cheng, C.: ‘Novel isolated bidirectional interleaved converter for renewable energy applications’, IEEE Trans. Ind. Electron., 2019, 66, (12), pp. 92789287.
    17. 17)
      • 29. Shen, H., Zhang, B., Qiu, D.: ‘Hybrid Z-source boost DC–DC converters’, IEEE Trans. Ind. Electron., 2017, 64, (1), pp. 310319.
    18. 18)
      • 32. Erickson, R.W., Maksimovic, D.: ‘Fundamentals of power electronics’ (Kluwer, Secaucus, NJ, USA, 2001, 2nd edn.).
    19. 19)
      • 35. Yari, K., Shahalami, S.H., Mojallali, H.: ‘High step-up isolated dc–dc converter with single input and double output and soft-switching performance for renewable energy applications’, IET Power Electron., 2019, 12, (11), pp. 29422952.
    20. 20)
      • 19. Liang, T., Lee, J., Chen, S., et al: ‘Novel isolated high-step-up DC–DC converter with voltage lift’, IEEE Trans. Ind. Electron., 2013, 60, (4), pp. 14831491.
    21. 21)
      • 5. Liu, H., Li, F., Ai, J.: ‘A novel high step-up dual switches converter with coupled inductor and voltage multiplier cell for a renewable energy system’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 49744983.
    22. 22)
      • 27. Loera-Palomo, R., Morales-saldaña, J.A., Palacios-Hernández, E.: ‘Quadratic step-down dc-dc converters based on reduced redundant power processing approach’, IET Power Electron., 2013, 6, (1), pp. 136145.
    23. 23)
      • 23. Forouzesh, M., Siwakoti, Y.P., Gorji, S.A., et al: ‘Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications’, IEEE Trans. Power Electron., 2017, 32, (12), pp. 91439178.
    24. 24)
      • 1. Liang, X.: ‘Emerging power quality challenges due to integration of renewable energy sources’, IEEE Trans. Ind. App., 2017, 53, (2), pp. 855866.
    25. 25)
      • 26. Andrade, A.M.S.S., Mattos, E., Schuch, L., et al: ‘Synthesis and comparative analysis of very high step-up DC–DC converters adopting coupled-inductor and voltage multiplier cells’, IEEE Trans. Power Electron., 2018, 33, (7), pp. 58805897.
    26. 26)
      • 17. Nguyen, M., Lim, Y., Choi, J., et al: ‘Isolated high step-up DC–DC converter based on quasi-switched-boost network’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 75537562.
    27. 27)
      • 15. Andrade, A.M.S.S., Schuch, L., da Silva Martins, M.L.: ‘High step-up PV module integrated converter for PV energy harvest in freedom systems’, IEEE Trans. Ind. Appl., 2017, 53, (2), pp. 11381148.
    28. 28)
      • 14. Aghdam Meinagh, F.A., Babaei, E., Tarzamni, H., et al: ‘Isolated high step-up switched-boost DC/DC converter with modified control method’, IET Power Electron., 2019, 12, (14), pp. 36353645.
    29. 29)
      • 12. Freddy, T.K.S., Rahim, N.A., Hew, W., et al: ‘Comparison and analysis of single-phase transformerless grid-connected PV inverters’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 53585369.
    30. 30)
      • 28. Spiazzi, G.: ‘Reduced redundant power processing concept: a reexamination’. 2016 IEEE 17th Workshop on Control and Modeling for Power Electronics (COMPEL), Trondheim, 2016, pp. 18.
    31. 31)
      • 21. Axelrod, B., Berkovich, Y., Ioinovici, A.: ‘Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC–DC PWM converters’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2008, 55, (2), pp. 687696.
    32. 32)
      • 24. Li, K., Hu, Y., Ioinovici, A.: ‘Generation of the large DC gain step-up nonisolated converters in conjunction with renewable energy sources starting from a proposed geometric structure’, IEEE Trans. Power Electron., 2017, 32, (7), pp. 53235340.
    33. 33)
      • 36. Mohseni, P., Hossein Hosseini, S., Maalandish, M., et al: ‘Ultra-high step-up two-input DC–DC converter with lower switching losses’, IET Power Electron., 2019, 12, (9), pp. 22012213.
    34. 34)
      • 6. Bower, W.I., Wiles, J.C.: ‘Analysis of grounded and ungrounded photovoltaic systems’. Proc. IEEE Photovoltaic Spec. Conf., Waikoloa, HI, USA, 5’9th December 1994, vol. 1, pp. 809812.
    35. 35)
      • 30. Luo, F.L., Ye, H.: ‘Hybrid split capacitors and split inductors applied in positive output super-lift Luo-converters’, IET Power Electron., 2013, 6, (9), pp. 17591768.
    36. 36)
      • 25. Tang, Y., Fu, D., Kan, J., et al: ‘Dual switches DC/DC converter with three-winding-coupled inductor and charge pump’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 461469.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.1190
Loading

Related content

content/journals/10.1049/iet-pel.2019.1190
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading