access icon free Modular solid-state pulse generator based on multi-turn LTD

A modular solid-state pulse generator based on a multi-turn linear transformer driver (LTD) is designed for the application of pulse power techniques with a high voltage, large current and wide pulse width. The LTD adopts the method of multi-turn winding on the magnetic core, which can help to output pulses of wide width. The isolation of the power supply with windings in the same direction of the LTD modules is designed, and the isolation voltage of the magnetic cores is the working voltage of the LTD modules. A modular solid-state pulse generator based on the multi-turn LTD is developed, which is composed of 10 LTD modules. Each module consists of 18 energy storage capacitors, metal-oxide-semiconductor field-effect transistors and their driving circuits connected in parallel. The pulse generator can output pulses with parameters including a voltage ranging from 0 to 5000 V, a pulse current up to −500 A, and a pulse width ranging from 200 ns to 5 μs. When all modules work in synchronisation, rectangular pulses can be produced with a rise time of 30 ns and a fall time of 16 ns. If all modules are asynchronised, trapezoidal pulses are produced with adjustable step-like rising and falling edges. Moreover, a higher-voltage pulse can be achieved by increasing the number of LTD modules.

Inspec keywords: pulse generators; pulsed power technology; transformer windings; transformer cores

Other keywords: time 200.0 ns to 5.0 mus; modular solid-state pulse generator; multiturn LTD modules; energy storage capacitors; time 16.0 ns; voltage 0.0 V to 5000.0 V; rectangular pulse current; magnetic core; synchronisation; multiturn linear transformer driver modules; pulse power techniques; time 30.0 ns; trapezoidal pulses; metal-oxide-semiconductor field-effect transistors

Subjects: Pulse generators; Magnetic cores; Inductors and transformers

References

    1. 1)
      • 6. Dong, S., Yao, C., Nan, Y., et al: ‘Solid-state nanosecond-pulse plasma jet apparatus based on Marx structure with crowbar switches’, IEEE Trans. Plasma Sci., 2016, 44, (12), pp. 33533360.
    2. 2)
      • 9. Jang, S., Yu, C., Ryoo, H.: ‘Simplified design of a solid state pulsed power modulator based on power cell structure’, IEEE Trans. Ind. Electron., 2018, 65, (3), pp. 21122121.
    3. 3)
      • 20. Yao, C., Zhang, X., Guo, F., et al: ‘FPGA-controlled all-solid-state nanosecond pulse generator for biological applications’, IEEE Trans. Plasma Sci., 2012, 40, (10), pp. 23662372.
    4. 4)
      • 19. Kuskov, A., Horne, S., Lehr, J., et al: ‘Characterization and analysis of a pulse forming network based 11 stage Marx system for a high power microwave, plasma and beam physics test stand’. 2014 IEEE 41st Int. Conf. on Plasma Sciences (ICOPS) held with 2014 IEEE Int. Conf. on High-Power Particle Beams (BEAMS), Washington, DC, USA, 2014, pp. 12.
    5. 5)
      • 3. Gad, A., Jayaram, S.H., Pritzker, M.: ‘Performance of electrode materials during food processing by pulsed electric fields’, IEEE Trans. Plasma Sci., 2014, 42, (10), pp. 31613166.
    6. 6)
      • 10. Jiang, W.: ‘Repetition rate pulsed power technology and its applications: (6) typical applications’, High Power Laser Part. Beams, 2014, 26, (3), pp. 715.
    7. 7)
      • 13. Liu, Z., Pemen, A.J.M., Van Hoppe, R.T.W.J., et al: ‘An efficient, repetitive nanosecond pulsed power generator with ten synchronized spark gap switches’, IEEE Trans. Dielectr. Electri. Insul., 2009, 16, (4), pp. 918925.
    8. 8)
      • 15. Rao, J., Liu, K., Qiu, J.: ‘All solid-state nanosecond pulsed generators based on Marx and magnetic switches’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (4), pp. 11231128.
    9. 9)
      • 7. Delshad, M.R., Rezanejad, M., Sheikholeslami, A.: ‘A new modular bipolar high-voltage pulse generator’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 11951203.
    10. 10)
      • 12. Yi, L., Fuchang, L., Xibo, F., et al: ‘Design and construction of a trigger generator based on pulse transformer for spark gap switch’, IEEE Trans. Plasma Sci., 2011, 39, (12), pp. 33783385.
    11. 11)
      • 24. Yao, C., Dong, S., Zhao, Y., et al: ‘A novel configuration of modular bipolar pulse generator topology based on Marx generator with double power charging’, IEEE Trans. Plasma Sci., 2016, 44, (10), pp. 18721878.
    12. 12)
      • 1. Sanders, J.M., Kuthi, A., Wu, Y.H., et al: ‘A linear, single-stage, nanosecond pulse generator for delivering intense electric fields to biological loads’, IEEE Trans. Dielectr. Electr. Insul., 2009, 16, (4), pp. 10481054.
    13. 13)
      • 17. Jiang, W., Sugiyama, H., Tokuchi, A.: ‘Pulsed power generation by solid-state LTD’, IEEE Trans. Plasma Sci., 2014, 42, (11), pp. 36033608.
    14. 14)
      • 23. Rao, J., Li, Z., Xia, K., et al: ‘An all solid-state repetitive high-voltage rectangular pulse generator based on magnetic switch’, IEEE Trans. Dielectr. Electron. Insul., 2015, 22, (4), pp. 19761982.
    15. 15)
      • 14. Creedon, J.E.: ‘Cathode-current dependence on pulse width for hydrogen thyratrons’, IEEE Trans. Commun. Electron., 1964, 83, (74), pp. 582585.
    16. 16)
      • 21. Wang, C., Yao, C., Dong, S., et al: ‘The development of all solid-state mixed pulse generator based on Marx and LTD topologies’, Trans. of China Electrotechnical Soc., 2018, 33, (13), pp. 30893097.
    17. 17)
      • 5. Elserougi, A.A., Massoud, A.M., Ahmed, S.: ‘A modular high-voltage pulse-generator with sequential charging for water treatment applications’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 78987907.
    18. 18)
      • 8. Khosravi, R., Rezanejad, M.: ‘A new pulse generator with high voltage gain and reduced components’, IEEE Trans. Ind. Electron., 2019, 66, pp. 27952802.
    19. 19)
      • 11. Lin, J., Zhang, J., Yang, J.: ‘High-voltage pulse generator based on magnetic pulse compression and transmission line transformer’. 2013 19th IEEE Pulsed Power Conf. (PPC), San Francisco, CA, USA, 2013, pp. 14.
    20. 20)
      • 2. Yao, C., Dong, S., Zhao, Y., et al: ‘Bipolar microsecond pulses and insulated needle electrodes for reducing muscle contractions during irreversible electroporation’, IEEE Trans. BioMed. Eng., 2017, 64, (12), pp. 29242937.
    21. 21)
      • 22. Jiang, W.: ‘Repetition rate pulsed power technology and its applications:(7)Major challenges and future trends’, High Power Laser Part. Beams, 2015, 27, (1), pp. 1620.
    22. 22)
      • 18. Zhou, L., Li, Z., Wang, Z., et al: ‘Design of a 5-MA 100-ns linear-transformer-driver accelerator for wire array Z-pinch experiments’, Phys. Rev. Special Top. Accel. Beams, 2016, 19, (3), pp. 19.
    23. 23)
      • 4. Elgenedy, M.A., Massoud, A.M., Ahmed, S., et al: ‘A high-gain, high-voltage pulse generator using sequentially-charged modular multilevel converter sub-modules, for water disinfection applications’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 6, (3), pp. 13941406.
    24. 24)
      • 16. Jiang, W., Diao, W., Wang, X.: ‘Marx generator using power mosfets’. 2009 IEEE Pulsed Power Conf. (PPC), Washington, DC, USA, 2009, pp. 408410.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.1184
Loading

Related content

content/journals/10.1049/iet-pel.2019.1184
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading