access icon free Direct torque controlled induction motor drive using modified five-level torque controller for reduction in torque ripple

The work presents a modified switching strategy in a five-level torque controller while implementing a direct torque control scheme for the induction motor (IM) drive. Apart from the presence of conventional full-voltage vectors, the inclusion of intermediate- and zero-voltage vectors brings in the modification above in a five-level torque controller. Moreover, the estimation of flux in the scheme is done by machine current model. These adjustments result in the reduction in the torque and speed ripples; and improve the flux regulation in the low-speed region, thereby obtaining superior low-speed performance. The performance of the proposed scheme is exhaustively tested in MATLAB/Simulink and further by hardware experimentation with a laboratory-type setup of 2.2 kW, two-level voltage source inverter fed IM drive.

Inspec keywords: induction motors; invertors; machine vector control; torque control; induction motor drives; machine control

Other keywords: direct torque control scheme; power 2.2 kW; induction motor drive; speed ripples; torque ripple; two-level voltage source inverter; five-level torque controller; modified switching strategy

Subjects: Drives; Control of electric power systems; Mechanical variables control; Power convertors and power supplies to apparatus; Asynchronous machines

References

    1. 1)
      • 13. Alsofyani, I.M., Idris, N.R.N.: ‘Simple flux regulation for improving state estimation at very low and zero speed of a speed sensorless direct torque control of an induction motor’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 30273035.
    2. 2)
      • 7. Habetler, T., Profumo, F., Pastorelli, M., et al: ‘Direct torque control of induction machines using space vector modulation’, IEEE Trans. Ind. Appl., 1992, 28, (5), pp. 10451053.
    3. 3)
      • 8. Zhang, Z., Tang, R., Bai, B., et al: ‘Novel direct torque control based on space vector modulation with adaptive stator flux observer for induction motors’, IEEE Trans. Magn., 2010, 46, (8), pp. 31333136.
    4. 4)
      • 24. Stojic, D., Milinkovic, M., Veinovic, S., et al: ‘Improved stator flux estimator for speed sensorless induction motor drives’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 23632371.
    5. 5)
      • 10. Lai, Y.S., Chen, J.H.: ‘A new approach to direct torque control of induction motor drives for constant inverter switching frequency and torque ripple reduction’, IEEE Trans. Energy Convers., 2001, 16, (3), pp. 220227.
    6. 6)
      • 29. Bolognani, S., Peretti, L., Zigliott, M.: ‘Parameter sensitivity analysis of an improved open-loop speed estimate for induction motor drives’, IEEE Trans. Power Electron., 2008, 23, (4), pp. 21272135.
    7. 7)
      • 1. Bose, B.K.: ‘Modern power electronics and AC drives’ (PHI Learning Privet Limited, Delhi, India, 2014).
    8. 8)
      • 20. Lai, Y.-S., Wang, W.-K., Chen, Y.-C.: ‘Novel switching techniques for reducing the speed ripple of AC drives with direct torque control’, IEEE Trans. Ind. Electron., 2004, 51, (4), pp. 768775.
    9. 9)
      • 30. Pal, A., Das, S., Chattopadhyay, A.K.: ‘An improved rotor flux space vector based MRAS for field oriented control of induction motor drives’, IEEE Trans. Power Electron., 2018, 33, (6), pp. 51315141.
    10. 10)
      • 26. Liu, Y., Cheng, S., Ning, B., et al: ‘Stator flux estimation with vector transforming and signal filtering method for electrical machines’, IET Power Electron., 2018, 11, (2), pp. 357363.
    11. 11)
      • 16. Mukherjee, S., Poddar, G.: ‘Direct torque control of squirrel cage induction motor for optimum current ripple using three-level inverter’, IET Power Electron., 2010, 3, (6), pp. 904914.
    12. 12)
      • 23. Shyu, K.K., Shang, L.J., Chen, H.Z., et al: ‘Flux compensated direct torque control of induction motor drives for low speed operation’, IEEE Trans. Power Electron., 2004, 19, (6), pp. 16081613.
    13. 13)
      • 17. Tang, Q., Ge, X., Liu, Y.-C., et al: ‘Improved switching-table-based DTC strategy for the post-fault three-level NPC inverter-fed induction motor drives’, IET Electr. Power Appl., 2018, 12, (1), pp. 7180.
    14. 14)
      • 2. Naik, N.V., Panda, A., Singh, S.P.: ‘A three-level fuzzy-2 DTC of induction motor drive using SVPWM’, IEEE Trans. Ind. Electron., 2016, 63, (3), pp. 14671479.
    15. 15)
      • 19. Mohan, D., Zhang, X., Foo, G.H.B.: ‘A simple duty cycle control strategy to reduce torque ripples and improve low-speed performance of a three-level inverter fed DTC IPMSM drive’, IEEE Trans. Ind. Electron., 2017, 64, (4), pp. 27092721.
    16. 16)
      • 15. Brando, G., Dannier, A., Pizzo, A. D., et al: ‘Generalised look-up table concept for direct torque control in induction drives with multilevel inverters’, IET Electr. Power Appl., 2015, 9, (8), pp. 556567.
    17. 17)
      • 14. Zhang, Y., Zhu, J., Zhao, Z., et al: ‘An improved direct torque control for three-level inverter-fed induction motor sensorless drive’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 15021513.
    18. 18)
      • 3. Shieh, H.J., Shyu, K.K.: ‘Non-linear sliding-mode torque control with adaptive backstepping approach for induction motor drive’, IEEE Trans. Ind. Electron., 1999, 46, (2), pp. 380389.
    19. 19)
      • 11. Martins, C., Roboam, X., Meynard, T., et al: ‘Switching frequency imposition and ripple reduction in DTC drives by using a multilevel converter’, IEEE Trans. Power Electron., 2002, 17, (2), pp. 286297.
    20. 20)
      • 12. Casadei, D., Serra, G., Tani, A., et al: ‘Performance analysis of a speed-sensorless induction motor drive based on a constant-switching-frequency DTC scheme’, IEEE Trans. Ind. Appl., 2003, 39, (2), pp. 476484.
    21. 21)
      • 27. Alsofyani, I.M., Idris, N., Alamri, Y.: ‘An improved flux regulation using a controlled hysteresis toque band for DTC of induction machines’. Proc. IEEE Conf. Energy Convers., (CENCON’ 2015), Johor Bahru, Malaysia, 2015.
    22. 22)
      • 9. Casadei, D., Serra, G., Tani, K.: ‘Implementation of a direct control algorithm for induction motors based on discrete space vector modulation’, IEEE Trans. Power Electron., 2000, 15, (4), pp. 769777.
    23. 23)
      • 18. Naganathan, P., Srinivas, S., Ittamveettil, H.: ‘Five-level torque controller-based DTC method for a cascaded three-level inverter fed induction motor drive’, IET Power Electron., 2017, 10, (10), pp. 12231230.
    24. 24)
      • 6. Takahashi, I., Noguchi, T.: ‘A new quick-response and high-efficiency control strategy of an induction motor’, IEEE Trans. Ind. Appl., 1986, 22, (5), pp. 820827.
    25. 25)
      • 21. Singh, B., Jain, S., Dwivedi, S.: ‘Torque ripple reduction technique with improved flux response for a direct torque control induction motor drive’, IET Power Electron., 2013, 6, (2), pp. 326342.
    26. 26)
      • 25. Wang, Y., Deng, Z.: ‘Improved stator flux estimation method for direct torque linear control of parallel hybrid excitation switched-flux generator’, IEEE Trans. Energy Convers., 2012, 27, (3), pp. 747756.
    27. 27)
      • 5. Davari, S.A.: ‘Predictive direct angle control of induction motor’, IEEE Trans. Ind. Electron., 2016, 63, (8), pp. 52765284.
    28. 28)
      • 22. Casadei, D., Serra, G., Tani, A.: ‘Steady-state and transient performance evaluation of a DTC scheme in the low speed range’, IEEE Trans. Power Electron., 2001, 16, (6), pp. 846851.
    29. 29)
      • 4. Rodriguez, J., Cortes, P.: ‘Predictive control of power converters and electrical drives’ (John Wiley & Sons, Ltd, Chichester, 2012).
    30. 30)
      • 28. Alsofyani, I.M., Idris, N.R.N.: ‘Lookup-table-based DTC of induction machines with improved flux regulation and extended Kalman filter state estimator at low-speed operation’, IEEE Trans. Ind. Inf., 2016, 12, (4), pp. 14121425.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.1027
Loading

Related content

content/journals/10.1049/iet-pel.2019.1027
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading