access icon free Output open-circuit voltage control method with resistor–capacitor–diode dummy load branch for SSAS

The current output type space solar array simulator (SSAS) is an important test equipment for a spacecraft power supply to achieve high dynamic output response performance and meet the power current high precision requirements of the power conditioning unit (PCU). However, the current output type SSAS cannot produce a stable open circuit voltage when the output terminal is completely disconnected from the load. Therefore, it is impossible to reliably test the PCU with different architectures. In this study, the open circuit voltage control output problem is analysed, and a parallel resistor–capacitor–diode (RCD) dummy load branch in the SSAS output port is proposed to ensure that the SSAS outputs high-precision open circuit voltage values and provides stable series switching performance without adversely affecting the shunt switching performance. The proposed solution yielded excellent experimental results for a 1 kW hardware power SSAS platform. The open circuit voltage control accuracy is 0.5%, and the series switching test and shunt switching test yielded stable performances with a high dynamic response that quickly converges to the target working points at 1.25 kHz switching frequency, indicating that the PCU can be reliably tested regardless of whether a series architecture or a shunt architecture is used.

Inspec keywords: resistors; space vehicles; power capacitors; dynamic response; aircraft power systems; solar cell arrays; electric current control; voltage control

Other keywords: output open-circuit voltage control method; SSAS output port; stable series switching performance; 1 kW hardware power SSAS platform; open-circuit voltage control accuracy; power current high-precision requirements; power conditioning unit; parallel resistor–capacitor–diode dummy load branch; spacecraft power supply; stable open-circuit voltage; output terminal; high-dynamic response; shunt switching performance; current output-type space solar array simulator; open-circuit voltage control output problem; high-dynamic output response performance; shunt switching test; series switching test; high-precision open-circuit voltage values; current output-type SSAS; spacecraft power system; PCU

Subjects: Other power apparatus and electric machines; Voltage control; Control system analysis and synthesis methods; Control of electric power systems; Aerospace control; Power electronics, supply and supervisory circuits; Solar cells and arrays; Aerospace power systems; Resistors; Current control

References

    1. 1)
      • 16. Jin, S., Zhang, D., Qu, L., et al: ‘High-power high-dynamic-performance space solar array simulator using step-wave tracking output voltage approach’, IEEE Trans. Power Electron., 2017, 33, (5), pp. 41024114.
    2. 2)
      • 12. Zhang, W., Kimball, J.W.: ‘DC–DC converter-based photovoltaic simulator with a double current mode controller’, IEEE Trans. Power Electron., 2017, 33, (7), pp. 58605868.
    3. 3)
      • 9. Thorvardarson, H.P., Gøttsche, F., Tonicello, F.: ‘A new European high fidelity solar array simulator for near-earth and deep space applications’. E3S Web of Conf., Porto Palace Thessaloniki, Greece, 2017, vol. 16.
    4. 4)
      • 6. Gallagher, D.T., Billerbeck, W.J.: ‘System level analysis of spacecraft power systems with PSpice’. SAE Technical Paper, 1992.
    5. 5)
      • 5. Denzinger, W.: ‘Electrical power subsystem of Globalstar’, Aerospace Shanghai, 1995, p. 369.
    6. 6)
      • 4. Wang, Y.: ‘Satellite power system optimization design’, Spacecr. Eng., 1999, 1, (2), pp. 3346.
    7. 7)
      • 15. Vavilapalli, S., Subramaniam, U., Padmanaban, S., et al: ‘Design and controller-in-loop simulations of a low-cost two-stage PV simulator’, Energies, 2018, 11, (10), p. 2774.
    8. 8)
      • 13. Shinde, U.K., Kadwane, S.G., Keshri, R.K., et al: ‘Dual-mode controller-based solar photovoltaic simulator for true PV characteristics’, Can. J. Electr. Comput. Eng., 2017, 40, (3), pp. 237245.
    9. 9)
      • 10. Jin, S., Zhang, D., Wang, C.: ‘UI–RI hybrid look-up table method with high linearity and high-speed convergence performance for FPGA-based space solar array simulator’, IEEE Trans. Power Electron., 2017, 33, (8), pp. 71787192.
    10. 10)
      • 11. Li, Y., Lee, T., Peng, F.Z., et al: ‘A hybrid control strategy for photovoltaic simulator’. 2009 24th Annual IEEE Applied Power Electronics Conf. Exposition, Washington, DC, USA, 2009, pp. 899903.
    11. 11)
      • 18. Jin, S., Zhang, D.: ‘A simple control method of open-circuit voltage for the FPGA-based solar array simulator’. 2016 IEEE Int. Conf. Power and Renewable Energy (ICPRE), Shanghai, People's Republic of China, 2016, pp. 209216.
    12. 12)
      • 1. Lapena, E., Rueda, P., Garcia, O., et al: ‘Boost-based MPPT for the MTM PCDU of the BepiColombo mission’. Esa communication production office, 2008, p. 661.
    13. 13)
      • 14. Nguyen-Duy, K., Knott, A., Andersen, M.A.E.: ‘High-dynamic performance non-linear source emulator’, IEEE Trans. Power Electron., 2015, 31, (3), pp. 25622574.
    14. 14)
      • 17. Jin, S., Zhang, D., Bao, Z., et al: ‘High-dynamic performance solar array simulator based on a SiC MOSFET linear power stage’, IEEE Trans. Power Electron., 2017, 33, (2), pp. 16821695.
    15. 15)
      • 7. Morris, G.M., Sheppard, M.A.: ‘Spacecraft electrical power system (EPS) generic analysis tools and techniques’. SAE Technical Paper, 1992.
    16. 16)
      • 2. Setiawan, E., Hodaka, I., Yamamoto, Y., et al: ‘Improvement of maximum power point tracking based on non-linear control of boost converter’. 2012 IEEE Conf. Control, Systems & Industrial Informatics (ICCSII), Bandung, Indonesia, 2012, pp. 180184.
    17. 17)
      • 8. Hongyu, Z., Zhang, D.: ‘Influence of multijunction Ga/As solar array parasitic capacitance in S3R and solving methods for high-power applications’, IEEE Trans. Power Electron., 2014, 29, (1), pp. 179190.
    18. 18)
      • 19. Seo, Y.T., Wellawatta, T., Choi, S.J.: ‘Design and analysis of three-section hybrid control method for solar array simulator’, Trans. Korean Inst. Power Electron., 2018, 23, (1), pp. 4758.
    19. 19)
      • 3. Garrigós, A., Carrasco, J.A., Blanes, J.M., et al: ‘Modeling the sequential switching shunt series regulator’, IEEE Power Electron. Lett., 2005, 3, (1), pp. 713.
    20. 20)
      • 20. Wellawatta, T.R., Choi, S.J.: ‘Universal control strategy using operating point projection technique for solar array hardware emulation’. 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018, pp. 1217.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.1004
Loading

Related content

content/journals/10.1049/iet-pel.2019.1004
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading