Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Multilevel inverter with improved basic unit structure for symmetric and asymmetric source configuration

An improved multilevel inverter (MLI) topology using a new basic unit structure with a reduced number of components is proposed in this study. Its single compact module is made up of two basic units connected to the left and right sides of a packed H-bridge. The topology produces 9-Level output when operated symmetrically and 17-Level output when operated asymmetrically. Identical magnitude of DC sources is used for the symmetrical operation, while non-identical magnitudes in a trinary sequence are used for the asymmetrical operation. The low-frequency modulation scheme is applied for the switching control where the switching angles are pre-calculated. The mathematical formulations for the switching are also considered to reduce the total harmonic distortion (THD) at the output. The proposed topology is also found to be superior in terms of the required number of switches per output level and total blocking voltage compared to conventional and recently reported MLIs. With these merits, real-time installation of the proposed topology will potentially require lesser space and become cheaper. The feasibility of the proposed topology is validated for its 9-Level and 17-Level operations through experimental verification on output characteristics, THD, blocking voltage, power-sharing and efficiency.

References

    1. 1)
      • 23. Chaturvedi, P., Jain, S., Agrawal, P., et al: ‘Switching losses and harmonic investigations in multilevel inverters’, IETE J. Res., 2008, 54, pp. 295305.
    2. 2)
      • 21. Edpuganti, A., Rathore, A.K.: ‘Optimal low switching frequency pulsewidth modulation of nine-level cascade inverter’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 482495.
    3. 3)
      • 12. Alishah, R.S., Hosseini, S.H., Babaei, E., et al: ‘A new general multilevel converter topology based on cascaded connection of submultilevel units with reduced switching components, DC sources, and blocked voltage by switches’, IEEE Trans. Ind. Electron., 2016, 63, (11), pp. 71577164.
    4. 4)
      • 14. Bana, P.R., Panda, K.P., Naayagi, R.T., et al: ‘Recently developed reduced switch multilevel inverter for renewable energy integration and drives application: topologies, comprehensive analysis and comparative evaluation’, IEEE Access, 2019, 7, pp. 5488854909.
    5. 5)
      • 13. Aalami, M., Babaei, E., Sabahi, M.: ‘Design of a new combined cascaded multilevel inverter based on developed H-bridge with reduced number of IGBTs and DC voltage sources’. 2018 IEEE 12th Int. Conf. on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018), Doha, Qatar, 2018, pp. 16.
    6. 6)
      • 29. Babaei, E., Hosseini, S.H.: ‘New cascaded multilevel inverter topology with minimum number of switches’, Energy Convers. Manag., 2009, 50, (11), pp. 27612767.
    7. 7)
      • 27. Babaei, E.: ‘A cascade multilevel converter topology with reduced number of switches’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 26572664.
    8. 8)
      • 24. Sakar, S., Balci, M.E., Abdel Aleem, S.H.E., et al: ‘Integration of large- scale PV plants in non-sinusoidal environments: considerations on hosting capacity and harmonic distortion limits’, Renew. Sustain. Energy Rev., 2018, 82, pp. 176186.
    9. 9)
      • 2. Gupta, K.K., Ranjan, A., Bhatnagar, P., et al: ‘Multilevel inverter topologies with reduced device count: a review’, IEEE Trans. Power Electron., 2016, 31, (1), pp. 135151.
    10. 10)
      • 17. Babaei, E., Kangarlu, M.F., Sabahi, M.: ‘Extended multilevel converters: an attempt to reduce the number of independent DC voltage sources in cascaded multilevel converters’, IET Power Electron., 2014, 7, (1), pp. 157166.
    11. 11)
      • 4. Prabaharan, N., Palanisamy, K.: ‘A comprehensive review on reduced switch multilevel inverter topologies, modulation techniques and applications’, Renew. Sustain. Energy Rev., 2017, 76, pp. 12481282.
    12. 12)
      • 7. Kala, P., Arora, S.: ‘A comprehensive study of classical and hybrid multilevel inverter topologies for renewable energy applications’, Renew. Sustain. Energy Rev., 2017, 76, pp. 905931.
    13. 13)
      • 6. Suresh, Y., Venkataramanaiah, J., Panda, A.K., et al: ‘Investigation on cascade multilevel inverter with symmetric, asymmetric, hybrid and multi-cell configurations’, Ain Shams Eng. J., 2017, 8, (2), pp. 263276.
    14. 14)
      • 16. Mokhberdoran, A., Ajami, A.: ‘Symmetric and asymmetric design and implementation of new cascaded multilevel inverter topology’, IEEE Trans. Power Electron., 2014, 29, (12), pp. 67126724.
    15. 15)
      • 1. Venkataramanaiah, J., Suresh, Y., Panda, A.K.: ‘A review on symmetric, asymmetric, hybrid and single DC sources based multilevel inverter topologies’, Renew. Sustain. Energy Rev., 2017, 76, pp. 788812.
    16. 16)
      • 10. Alishah, R.S., Nazarpour, D., Hosseini, S.H., et al: ‘Novel topologies for symmetric, asymmetric, and cascade switched-diode multilevel converter with minimum number of power electronic components’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 53005310.
    17. 17)
      • 22. Mohd Ali, J.S., Krishnaswamy, V.: ‘An assessment of recent multilevel inverter topologies with reduced power electronics components for renewable applications’, Renew. Sustain. Energy Rev., 2018, 82, pp. 33793399.
    18. 18)
      • 19. Jayapalan, G., Edward, B.: ‘Design and implementation of 15-level asymmetric cascaded H bridge multilevel inverter’, J. Electr. Eng., 2018, 17, pp. 396404.
    19. 19)
      • 3. Yahya, A., Ali, S.M.U., Ghani, A.: ‘New level doubling architecture of cascaded multilevel inverter’, IET Power Electron., 2019, 12, (8), pp. 18911902.
    20. 20)
      • 11. Babaei, E., Alilu, S., Laali, S.: ‘A new general topology for cascaded multilevel inverters with reduced number of components based on developed H-bridge’, IEEE Trans. Ind. Electron., 2014, 61, (8), pp. 39323939.
    21. 21)
      • 15. Hinago, Y., Koizumi, H.: ‘A single-phase multilevel inverter using switched series/parallel DC voltage sources’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 26432650.
    22. 22)
      • 5. Prabaharan, N., Palanisamy, K.: ‘Comparative analysis of symmetric and asymmetric reduced switch MLI topologies using unipolar pulse width modulation strategies’, IET Power Electron, 2016, 9, (15), pp. 28082823.
    23. 23)
      • 18. Prabaharan, N., Salam, Z., Cecati, C., et al: ‘Design and implementation of new multilevel inverter topology for trinary sequence using unipolar pulse width modulation’, IEEE Trans. Ind. Electron., 2019, 67, (5), pp. 35733582.
    24. 24)
      • 9. Su, G.-J.: ‘Multilevel DC-link inverter’, IEEE Trans. Ind. Appl., 2005, 41, (3), pp. 848854.
    25. 25)
      • 8. Hamidi, M.N., Ishak, D., Zainuri, M.A.A.M.: ‘Comparative evaluation of multilevel DC link inverter using symmetrical and asymmetrical DC sources’, J. Electr. Eng., 2019, 70, (2), pp. 122129.
    26. 26)
      • 28. Manjrekar, M.D., Steimer, P., Lipo, T.A.: ‘Hybrid multilevel power conversion system: a competitive solution for high power applications’. Conf. Record of the 1999 IEEE Industry Applications Conf. Thirty-Forth IAS Annual Meeting (Cat. No. 99CH36370), Phoenix, AZ, USA, 1999, vol. 3, pp. 15201527.
    27. 27)
      • 25. Lee, S.S., Sidorov, M., Idris, N.R.N., et al: ‘A symmetrical cascaded compact-module multilevel inverter (CCM-MLI) with pulsewidth modulation’, IEEE Trans. Ind. Electron., 2018, 65, (6), pp. 46314639.
    28. 28)
      • 30. Babaei, E., Hosseini, S.H., Gharehpetian, G.B., et al: ‘Reduction of dc voltage sources and switches in asymmetrical multilevel converters using a novel topology’, Electr. Power Syst. Res., 2007, 77, (8), pp. 10731085.
    29. 29)
      • 26. Lai, J.-S., Peng, F.Z.: ‘Multilevel converters-a new breed of power converters’, IEEE Trans. Ind. Appl., 1996, 32, (3), pp. 509517.
    30. 30)
      • 20. Edpuganti, A., Rathore, A.K.: ‘A survey of low switching frequency modulation techniques for medium-voltage multilevel converters’, IEEE Trans. Ind. Appl., 2015, 51, (5), pp. 42124228.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0916
Loading

Related content

content/journals/10.1049/iet-pel.2019.0916
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address