access icon free Modulated predictive current control for a two-level grid-connected converter with over-modulation capability

Modulated model predictive control (M2PC) approaches have been widely investigated owing to their improved steady-state performance and constant switching frequency operation. However, most of these methods either increase control complexity or cannot obtain optimal solutions under certain operating conditions such as lower modulation index and near the boundary of linear and over-modulation regions. To overcome these limitations, this study proposes a new modulated predictive current control technique based on a novel virtual vector synthesis. The optimal duty cycle is obtained by solving the optimisation problem defined by the cost function. To minimise the tracking error of the input current, a simple non-linearity compensation method for the converter is also demonstrated. The experimental results confirm that the proposed technique significantly reduces the steady-state error of the controlled objective and the ripples in the input current without sacrificing the transient performance compared to other existing M2PC methods.

Inspec keywords: switching convertors; electric current control; power convertors; power grids; optimisation; predictive control

Other keywords: nonlinearity compensation method; lower modulation index; modulated predictive current control technique; over-modulation capability; operating conditions; controlled objective; input current; existing M2PC methods; improved steady-state performance; modulated model predictive control; control complexity; novel virtual vector synthesis; over-modulation regions; steady-state error; optimal duty cycle; two-level grid-connected converter; optimal solutions; constant switching frequency operation

Subjects: Power convertors and power supplies to apparatus; Current control; Control of electric power systems; Optimal control

References

    1. 1)
      • 14. Merabet, A., Labib, L., Ghias, A.M.Y.M.: ‘Robust model predictive control for photovoltaic inverter system with grid fault ride-through capability’, IEEE Trans Smart Grid, 2018, 9, (6), pp. 56995709.
    2. 2)
      • 27. Davari, S.A., Khaburi, D.A., Kennel, R.: ‘An improved FCS-MPC algorithm for an induction motor with an imposed optimized weighting factor’, IEEE Trans. Power Electron., 2012, 27, (3), pp. 15401551.
    3. 3)
      • 5. Bouaziz, B., Bacha, F.: ‘Direct power control of grid-connected converters using sliding mode controller’. Proc. 2013 Int. Conf. on Electrical Engineering Software Applications, Hammamet, 2013, pp. 16.
    4. 4)
      • 31. Sikorski, A., Grodzki, R.: ‘Predictive control of the AC/DC converter’. 2014 16th Int. Power Electronics and Motion Control Conf. and Exposition, Antalya, 2014, pp. 131136.
    5. 5)
      • 24. Zhang, Y., Bai, Y., Yang, H.: ‘A universal multiple-vector-based model predictive control of induction motor drives’, IEEE Trans. Power Electron., 2018, 33, (8), pp. 69576969.
    6. 6)
      • 37. Yaramasu, V., Rivera, M., Narimani, M., et al: ‘Model predictive approach for a simple and effective load voltage control of four-leg inverter with an output LC filter’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 52595270.
    7. 7)
      • 35. Donoso, F., Mora, A., Cardenas, R., et al: ‘Finite-set model-predictive control strategies for a 3L-NPC inverter operating with fixed switching frequency’, IEEE Trans. Ind. Electron., 2018, 65, (5), pp. 39543965.
    8. 8)
      • 17. Zhang, Y., Xie, W.: ‘Low complexity model predictive control-single-vector-based approach’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 55325541.
    9. 9)
      • 30. Zhang, Y., Hu, J., Zhu, J.: ‘Three-vectors-based predictive direct power control of the doubly fed induction generator for wind energy applications’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 34853500.
    10. 10)
      • 20. Wang, Y., Wang, X., Xie, W., et al: ‘Deadbeat model-predictive torque control with discrete space-vector modulation for PMSM drives’, IEEE Trans. Ind. Electron., 2017, 64, (5), pp. 35373547.
    11. 11)
      • 3. Kwak, S., Moon, U.C., Park, J.C.: ‘Predictive-control-based direct power control with an adaptive parameter identification technique for improved AFE performance’, IEEE Trans. Power Electron., 2014, 29, (11), pp. 61786187.
    12. 12)
      • 11. Norambuena, M., Garcia, C., Rodriguez, J., et al: ‘Finite control set model predictive control reduced computational cost applied to a flying capacitor converter’. Proc. 2017 Annual Conf. of IEEE Industrial Electronics Society, Beijing, 2017, pp. 49034907.
    13. 13)
      • 25. Zhang, Y., Yang, H.: ‘Two-vector-based model predictive torque control without weighting factors for induction motor drives’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 13811390.
    14. 14)
      • 2. Alam, K.S., Xiao, D., Parvez Akter, M., et al: ‘Modified MPC with extended VVs for grid-connected rectifier’, IET Power Electron., 2018, 11, (12), pp. 19261936.
    15. 15)
      • 19. Arif, B., Tarisciotti, L., Zanchetta, P., et al: ‘Grid parameter estimation using model predictive direct power control’, IEEE Trans. Ind. Appl., 2015, 51, (6), pp. 46144622.
    16. 16)
      • 16. Riar, B.S., Scoltock, J., Madawala, U.K.: ‘Model predictive direct slope control for power converters’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 22782289.
    17. 17)
      • 34. Tarisciotti, L., Zanchetta, P., Watson, A., et al: ‘Modulated model predictive control for a three-phase active rectifier’, IEEE Trans. Ind. Appl., 2015, 51, (2), pp. 16101620.
    18. 18)
      • 8. Davari, M., Mohamed, Y.A.I.: ‘Robust vector control of a very weak-grid-connected voltage-source converter considering the phase-locked loop dynamics’, IEEE Trans. Power Electron., 2017, 32, (2), pp. 977994.
    19. 19)
      • 10. Rodriguez, J., Pontt, J., Silva, C.A., et al: ‘Predictive current control of a voltage source inverter’, IEEE Trans. Ind. Electron., 2007, 54, (1), pp. 495503.
    20. 20)
      • 12. Vazquez, S., Rodriguez, J., Rivera, M., et al: ‘Model predictive control for power converters and drives: advances and trends’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 935947.
    21. 21)
      • 23. Amiri, M., Milimonfared, J., Khaburi, D.A.: ‘Predictive torque control implementation for induction motors based on discrete space vector modulation’, IEEE Trans. Ind. Electron., 2018, 65, (9), pp. 68816889.
    22. 22)
      • 28. Zhang, Y., Xie, W., Li, Z., et al: ‘Low-complexity model predictive power control: double-vector-based approach’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 58715880.
    23. 23)
      • 22. Scoltock, J., Geyer, T., Madawala, U.K.: ‘Model predictive direct power control for grid-connected NPC converters’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 53195328.
    24. 24)
      • 29. Zhang, X., Hou, B.: ‘Double vectors model predictive torque control without weighting factor based on voltage tracking error’, IEEE Trans. Power Electron., 2018, 33, (3), pp. 23682380.
    25. 25)
      • 9. Zhou, S., Zou, X., Zhu, D., et al:An improved design of current controller for LCL-type grid-connected converter to reduce negative effect of PLL in weak grid’, IEEE J. Emerg. Sel. Top. Power Electron., 2018, 6, (2), pp. 648663.
    26. 26)
      • 6. Malinowski, M., Jasinski, M., Kazmierkowski, M.P.: ‘Simple direct power control of three-phase PWM rectifier using space-vector modulation (DPC-SVM)’, IEEE Trans. Ind. Electron., 2004, 51, (2), pp. 447454.
    27. 27)
      • 1. Hassine, I.M., Naouar, M.W., Mrabet-Bellaaj, N.: ‘Model predictive-sliding mode control for three-phase grid-connected converters’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 13411349.
    28. 28)
      • 13. Norambuena, M., Garcia, C., Rodriguez, J.: ‘The challenges of predictive control to reach acceptance in the power electronics industry’. Proc. Power Electronics and Drive Systems Technologies Conf., Tehran, 2016, pp. 636640.
    29. 29)
      • 15. Song, Z., Chen, W., Xia, C.: ‘Predictive direct power control for three-phase grid-connected converters without sector information and voltage vector selection’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 55185531.
    30. 30)
      • 7. Xu, J., Xie, S., Tang, T.: ‘Improved control strategy with grid-voltage feed-forward for LCL-filter-based inverter connected to weak grid’, IET Power Electron., 2014, 7, (10), pp. 26602671.
    31. 31)
      • 26. Zhang, Y., Xie, W., Li, Z., et al: ‘Model predictive direct power control of a PWM rectifier with duty cycle optimization’, IEEE Trans. Power Electron., 2013, 28, (11), pp. 53435351.
    32. 32)
      • 18. Antoniewicz, P., Kazmierkowski, M.P.: ‘Virtual-flux-based predictive direct power control of AC/DC converters with online inductance estimation’, IEEE Trans. Ind. Electron., 2008, 55, (12), pp. 43814390.
    33. 33)
      • 21. Zhang, Y., Xu, D., Huang, L.: ‘Generalized multiple-vector-based model predictive control for PMSM drives’, IEEE Trans. Ind. Electron., 2018, 65, (12), pp. 93569366.
    34. 34)
      • 32. Tarisciotti, L., Zanchetta, P., Watson, A., et al: ‘Active DC voltage balancing PWM technique for high-power cascaded multilevel converters’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 61576167.
    35. 35)
      • 4. Jin, N., Gan, C., Guo, L.: ‘Predictive control of bidirectional voltage source converter with reduced current harmonics and flexible power regulation under unbalanced grid’, IEEE Trans. Energy Convers., 2018, 33, (3), pp. 11181131.
    36. 36)
      • 36. Zhang, J., Rahman, M.F.: ‘Non-linear behaviour compensation of the converter for direct torque controlled induction machines’. Proc. Australian Universities Power Energy Conf., Melbourne, 2006.
    37. 37)
      • 33. Tarisciotti, L., Zanchetta, P., Watson, A., et al: ‘Modulated model predictive control for a seven-level cascaded H-bridge back-to-back converter’, IEEE Trans. Ind. Electron., 2014, 61, (10), pp. 53755383.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0781
Loading

Related content

content/journals/10.1049/iet-pel.2019.0781
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading