Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Passivity-based output admittance shaping of the converter-side current-controlled grid-tied inverter to improve the robustness to the grid impedance

Passivity-based output admittance shaping of the converter-side current-controlled grid-tied inverter to improve the robustness to the grid impedance

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In the LCL-filtered grid-tied inverter, the classical low-cost control strategy which is composed of the single converter-side current control and the unit grid voltage feedforward compensation, is commonly employed to inject the sinusoidal current into the utility. However, the inverter output admittance features the non-passive behaviour, which indicates that the harmonic currents may be amplified under the disturbances of the grid voltage and the grid impedance. Therefore, two dedicated current loops based on only the converter-side current feedback are proposed, which consist of the low-pass filter-based current regulation and the high-pass filter-based active damping (HFAD). The mixed asymmetrical regular sampling method is further used to reduce the control delay of the HFAD. Moreover, the low-pass filter-based feedforward is developed to make a compromise between the disturbance rejection and the stability. Fair comparisons with other typical control strategies are made through analysing the virtual resistor in parallel with the filter capacitor, which reveals that the positive virtual resistance at the frequency lower than half of the switching frequency is maintained. With the elaborated control parameters, the exhaustive experimental results finally verify the effectiveness of the proposed method in passivating the inverter output admittance.

References

    1. 1)
      • 25. Wang, G., Du, X., Shi, Y., et al: ‘Effects on oscillation mechanism and design of grid-voltage feedforward in grid-tied converter under weak grid’, IET Power Electron., 2019, 12, (5), pp. 10941101.
    2. 2)
      • 11. Zhu, K., Sun, P., Wang, L., et al: ‘Control delay compensation scheme based on non-instantaneous loading and pulse-width equivalence for active damping of LCL-type inverters’, IET Power Electron., 2019, 12, (9), pp. 23892399.
    3. 3)
      • 6. Parker, S.G., McGrath, B.P., Holmes, D.G.: ‘Regions of active damping control for LCL filters’, IEEE Trans. Ind. Appl., 2014, 50, (1), pp. 424433.
    4. 4)
      • 30. Pan, D., Ruan, X., Wang, X., et al: ‘Analysis and design of current control schemes for LCL-type grid-connected inverter based on a general mathematical model’, IEEE Trans. Power Electron., 2017, 32, (6), pp. 43954411.
    5. 5)
      • 17. Javier, R., Emilio, J., Rafael, P.: ‘All-pass-filter-based active damping for VSCs with LCL filters connected to weak grids’, IEEE Trans. Power Electron., 2018, 33, (11), pp. 98909902.
    6. 6)
      • 19. Yao, W., Yang, Y., Zhang, X., et al: ‘Design and analysis of robust active damping for LCL filters using digital notch filters’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 23602375.
    7. 7)
      • 28. Bai, H., Wang, X., Blaabjerg, F.: ‘Passivity enhancement in renewable energy source based power plant with paralleled grid-connected VSIs’, IEEE Trans. Ind. Electron., 2017, 53, (4), pp. 37933802.
    8. 8)
      • 35. IEEE Standards Coordinating Committee: ‘IEEE standard for interconnecting distributed resources with electric power systems 1547-2003’, 2003.
    9. 9)
      • 24. Xu, J., Xie, S., Qian, Q., et al: ‘Adaptive feedforward algorithm without grid impedance estimation for inverters to suppress grid current instabilities and harmonics due to grid impedance and grid voltage distortion’, IEEE Trans. Ind. Electron., 2017, 64, (9), pp. 75747586.
    10. 10)
      • 14. Zhou, L., Chen, Y., Luo, A., et al: ‘robust two degrees-of-freedom single current control strategy for LCL-type grid-connected DG system under grid frequency fluctuation and grid-impedance variation’, IET Power Electron., 2016, 9, (14), pp. 26822691.
    11. 11)
      • 16. Liu, T., Liu, J., Liu, Z., et al: ‘A study of virtual resistor-based active damping alternatives for LCL resonance in grid-connected voltage source inverters’, IEEE Trans. Power Electron., 2020, 35, (1), pp. 247263.
    12. 12)
      • 3. Sun, J.: ‘Impedance-based stability criterion for grid-connected inverters’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 30753079.
    13. 13)
      • 13. Su, M., Cheng, B., Sun, Y., et al: ‘Single-sensor control of LCL-filtered grid-connected inverters’, IEEE Access, 2019, 7, pp. 3848138494.
    14. 14)
      • 8. Qian, Q., Xie, S., Xu, J., et al: ‘Harmonic suppression and stability enhancement for parallel multiple grid-connected inverters based on passive inverter output impedance’, IEEE Trans. Ind. Electron., 2017, 64, (9), pp. 75877598.
    15. 15)
      • 34. Dannehl, J, Wessels, C., Fuchs, F.: ‘Limitations of voltage-oriented pi current control of grid-connected PWM rectifiers with LCL filters’, IEEE Trans. Ind. Electron., 2009, 56, (2), pp. 380388.
    16. 16)
      • 20. Rafael, P., Macro, L., Frede, B., et al: ‘A self-commissioning notch filter for active damping in a three-phase LCL-filter-based grid-tie converter’, IEEE Trans. Power Electron., 2019, 29, (12), pp. 67546761.
    17. 17)
      • 26. Ghoshal, A., John, V.: ‘Active damping of LCL filter at low switching to resonance frequency ratio’, IET Power Electron., 2015, 8, (4), pp. 574582.
    18. 18)
      • 5. Wang, B., Shen, Z., Liu, H., et al: ‘linear ADRC direct current control of grid connected inverter with LCL filter for both active damping and grid voltage induced current distortion suppression’, IET Power Electron., 2018, 11, (11), pp. 17481755.
    19. 19)
      • 27. Enrique, R., Francisco, D.F., Juan, C.V., et al: ‘Analysis and comparison of notch filter and capacitor voltage feedforward active damping techniques for LCL grid-connected converters’, IEEE Trans. Power Electron., 2019, 34, (4), pp. 39583972.
    20. 20)
      • 10. Ali, A., Josep, M. G., Hamid, M., et al: ‘Passivity-based design of plug-and-play current-controlled grid-connected inverters’, IEEE Trans. Power Electron., 2020, 35, (2), pp. 21352150.
    21. 21)
      • 33. Zhang, C, Wang, X., Blaabjerg, F., et al: ‘The influence of phase-locked loop on the stability of single-phase grid-connected inverter’. IEEE Energy Conversion Congress and Exposition, Montreal, Canada, 2015, pp. 47374744.
    22. 22)
      • 23. Chen, X., Zhang, Y., Wang, S., et al: ‘Impedance-phased dynamic control method for grid-connected inverters in a weak grid’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 274283.
    23. 23)
      • 1. Ali, Z., Christofides, N., Hadjidemetriou, L., et al: ‘Multi-functional distributed generation control scheme for improving the grid power quality’, IET Power Electron., 2019, 12, (1), pp. 3043.
    24. 24)
      • 32. Cigre technical brochure 671, WG B4.62.: ‘Connection of wind farms to weak AC networks’, 2016.
    25. 25)
      • 21. Wang, X., Blaabjerg, F., Loh, P.C.: ‘Passivity-based stability analysis and damping injection for multiparalleled VSCs with LCL filter’, IEEE Trans. Power Electron., 2017, 32, (11), pp. 89228935.
    26. 26)
      • 7. Liu, J., Zhou, L., Molinas, M.: ‘Damping region extension for digitally controlled LCL-type grid-connected inverter with capacitor-current feedback’, IET Power Electron., 2018, 11, (12), pp. 19741982.
    27. 27)
      • 29. Yang, L., Yang, J.: ‘A robust dual-loop current control method with a delay-compensation control link for LCL-type shunt active power filters’, IEEE Trans. Power Electron., 2019, 34, (7), pp. 61836200.
    28. 28)
      • 2. Wang, X., Blaabjerg, F.: ‘Harmonic stability in power electronic based power systems: concept, modelling, and analysis’, IEEE Trans. Smart Grid, 2019, 10, (3), pp. 28582870.
    29. 29)
      • 9. Pan, D., Ruan, X., Bao, C., et al: ‘Capacitor-current-feedback active damping with reduced computation delay for improving robustness of LCL-type grid-connected inverter’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 34143427.
    30. 30)
      • 18. Dannehl, J, Liserre, M., Fuchs, F.: ‘Filter-based active damping of voltage source converters with LCL filters’, IEEE Trans. Ind. Electron., 2011, 58, (8), pp. 36233633.
    31. 31)
      • 15. Wang, X., Blaabjerg, F., Loh, P. C.: ‘Grid-current-feedback active damping for LCL resonance in grid-connected voltage-source converters’, IEEE Trans. Ind. Electron., 2016, 31, (1), pp. 213223.
    32. 32)
      • 4. Harnefors, L., Wang, X., Yepes, A.G., et al: ‘Passivity-based stability assessment of grid-connected VSCs-an overview’, IEEE J. Emerg. Sel. Top. Power Electron., 2016, 4, (1), pp. 116125.
    33. 33)
      • 12. Chen, C., Xiong, J., Wan, Z., et al: ‘A time delay compensation method based on area equivalence for active damping of an LCL-type converter’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 762772.
    34. 34)
      • 31. Yang, L., Chen, Y., Luo, A., et al: ‘Effect of phase-locked loop on small-signal perturbation modelling and stability analysis for three-phase LCL-type inverter connected to weak grid’, IET Renew. Power Gener., 2019, 13, (1), pp. 8693.
    35. 35)
      • 22. Zhou, L., Chen, Z., Liu, Y., et al: ‘Phase-reshaping strategy for enhancing grid connected inverter robustness to grid impedance’, IET Power Electron., 2018, 11, (8), pp. 14341443.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0770
Loading

Related content

content/journals/10.1049/iet-pel.2019.0770
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address