access icon free Power sharing strategy for multi-source electrical auxiliary power unit with bi-directional interaction capability

This study presents a hierarchical control strategy for an auxiliary power unit (APU) for aircraft to coordinate multiple power sources and control developed power electronic interfaces. The study benefits from the presence of a hybrid energy system in paralleled structure to the main generator as the complementary system. The employed structure enhances power quality and improves the voltage profile of the high-voltage DC bus. Furthermore, the developed bi-directional topology provides the possibility of interaction with the grid. Considering the APU features in an aircraft, a hierarchical control strategy with different levels of control, timescale, dynamic response, and significance are developed. The developed controller consists of a power management algorithm in the higher level, and local voltage and current controllers in the lower one. The algorithm aims to maximise the PV sub-system utilisation, overcome voltage fluctuations, increase power density, reduce operation costs, and increase system availability while allowing further development to larger systems. Simulation and experimental results confirm the robustness of the algorithm. The result shows that the proposed power sharing strategy optimises the system utilisation while achieving a high-quality voltage profile under severe fluctuations. Moreover, the stress on the battery pack is reduced to improve the life cycle and reduce operation costs.

Inspec keywords: power electronics; power distribution control; battery powered vehicles; electric current control; power generation control; power control; distributed power generation; power supply quality

Other keywords: voltage fluctuations; power sharing strategy; employed structure; multisource electrical auxiliary power unit; increase system availability; APU features; PV sub-system utilisation; power electronic interfaces; power management algorithm; paralleled structure; power quality; high-quality voltage profile; increase power density; high-voltage DC bus; aircraft; study benefits; multiple power sources; current controllers; developed bi-directional topology; hybrid energy system; hierarchical control strategy; complementary system; bi-directional interaction capability; local voltage

Subjects: Current control; Control of electric power systems; Distributed power generation; Distribution networks; Power and energy control

References

    1. 1)
      • 31. Jain, S., Agarwal, V.: ‘An integrated hybrid power supply for distributed generation applications fed by nonconventional energy sources’, IEEE Trans. Energy Convers., 2008, 23, (2), pp. 622631(in English), doi: 10.1109/Tec.2008.918631.
    2. 2)
      • 26. El-Kishky, H., Ibrahimi, H., Dakka, M.A., et al: ‘Transient performance of battery/fuel cell-based APU on aircraft electric power systems with nonlinear loading’. 2011 IEEE Pulsed Power Conf., Chicago, IL, USA, 19–23 June 2011, pp. 14861489, doi: 10.1109/PPC.2011.6191669.
    3. 3)
      • 16. Duan, C., Wang, C., Li, Z., et al: ‘A solar power-assisted battery balancing system for electric vehicles’, IEEE Trans. Transp. Electrification, 2018, 4, (2), pp. 432443, doi: 10.1109/TTE.2018.2817123.
    4. 4)
      • 42. Tremblay, O., Dessaint, L.-A.: ‘Experimental validation of a battery dynamic model for EV applications’, World Electr. Veh. J., 2009, 3, (2), pp. 289298.
    5. 5)
      • 32. Mahmood, H., Jiang, J.: ‘Decentralized power management of multiple PV, battery, and droop units in an islanded microgrid’, IEEE Trans Smart Grid, 2019, 10, pp. 18981906, doi: 10.1109/TSG.2017.2781468.
    6. 6)
      • 39. Pinto, J.G., Monteiro, V., Goncalves, H., et al: ‘Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode’, IEEE Trans. Veh. Technol., 2014, 63, (3), pp. 11041116, doi: 10.1109/TVT.2013.2283531.
    7. 7)
      • 21. Chen, J., Song, Q.: ‘A decentralized energy management strategy for a fuel cell/supercapacitor-based auxiliary power unit of a more electric aircraft’, IEEE Trans. Ind. Electron., 2019, 66, (7), pp. 57365747, doi: 10.1109/TIE.2018.2866042.
    8. 8)
      • 1. Eid, A., El-Kishky, H., Abdel-Salam, M., et al: ‘Modeling and characterization of an aircraft electric power system with a fuel cell-equipped APU connected at HVDC bus’. 2010 IEEE Int. Power Modulator and High Voltage Conf., Atlanta, GA, USA, 23–27 May 2010, pp. 639642, doi: 10.1109/IPMHVC.2010.5958440.
    9. 9)
      • 7. Abarzadeh, M., Kojabadi, H.M.: ‘A static ground power unit based on the improved hybrid active neutral-point-clamped converter’, IEEE Trans. Ind. Electron., 2016, 63, (12), pp. 77927803, doi: 10.1109/TIE.2016.2557314.
    10. 10)
      • 8. Lucken, A., Kut, T., Terorde, M., et al: ‘Integration scenarios to improve fuel cell dynamics for modern aircraft application’. 2013 48th Int. Universities’ Power Engineering Conf. (UPEC), Dublin, Ireland, 2013, pp. 16.
    11. 11)
      • 37. Ahmed, J., Salam, Z.: ‘A modified P&O maximum power point tracking method with reduced steady-state oscillation and improved tracking efficiency’, IEEE Trans. Sustain. Energy, 2016, 7, (4), pp. 15061515.
    12. 12)
      • 25. Cho, Y., Lai, J.-S.: ‘High-efficiency multiphase DC–DC converter for fuel-cell-powered truck auxiliary power unit’, IEEE Trans. Veh. Technol., 2013, 62, (6), pp. 24212429.
    13. 13)
      • 30. Khajesalehi, J., Sheshyekani, K., Hamzeh, M., et al: ‘High-performance hybrid photovoltaic -battery system based on quasi-Z-source inverter: application in microgrids’, IET Gener. Transm. Distrib., 2015, 9, (10), pp. 895902. Available at http://digital-library.theiet.org/content/journals/10.1049/iet-gtd.2014.0336.
    14. 14)
      • 22. Gao, F., Bozhko, S., Costabeber, A., et al: ‘Control design and voltage stability analysis of a droop-controlled electrical power system for more electric aircraft’, IEEE Trans. Ind. Electron., 2017, 64, (12), pp. 92719281, doi: 10.1109/TIE.2017.2711552.
    15. 15)
      • 6. Marzouk, A.D., Fournier-Bidoz, S., Yablecki, J., et al: ‘Analysis of partial power processing distributed MPPT for a PV powered electric aircraft’. 2014 Int. Power Electronics Conf. (IPEC-Hiroshima 2014 – ECCE ASIA), Hiroshima, Japan, 18–21 May 2014, pp. 34963502, doi: 10.1109/IPEC.2014.6869998.
    16. 16)
      • 34. Yi-Hung, L.: ‘A novel reduced switching loss bidirectional AC/DC converter PWM strategy with feedforward control for grid-tied microgrid systems’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 15001513, doi: 10.1109/TPEL.2013.2260872.
    17. 17)
      • 24. Grupp, D.J., Forrest, M.E., Mader, P.G., et al: ‘Design considerations for a PEM fuel cell powered truck APU’. 2004.
    18. 18)
      • 28. Shi, K., Li, H., Hu, C., et al: ‘Topology of super uninterruptible power supply with multiple energy sources’. 2015 9th Int. Conf. on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Republic of Korea, 1–5 June 2015, pp. 17421749, doi: 10.1109/ICPE.2015.7168013.
    19. 19)
      • 41. Bellia, H., Youcef, R., Fatima, M.: ‘A detailed modeling of photovoltaic module using MATLAB’, NRIAG J. Astron. Geophys., 2014, 3, (1), pp. 5361.
    20. 20)
      • 35. Koad, R.B.A., Zobaa, A.F., El-Shahat, A.: ‘A novel MPPT algorithm based on particle swarm optimization for photovoltaic systems’, IEEE Trans. Sustain. Energy, 2017, 8, (2), pp. 468476(in English), doi: 10.1109/Tste.2016.2606421.
    21. 21)
      • 14. Lahyani, A., Venet, P., Guermazi, A., et al: ‘Battery/supercapacitors combination in uninterruptible power supply (UPS)’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 15091522, doi: 10.1109/TPEL.2012.2210736.
    22. 22)
      • 13. Ellabban, O., Abu-Rub, H., Blaabjerg, F.: ‘Renewable energy resources: current status, future prospects and their enabling technology’, Renew. Sustain. Energy Rev., 2014, 39, pp. 748764, doi: https://doi.org/10.1016/j.rser.2014.07.113.
    23. 23)
      • 18. Tariq, M., Maswood, A.I., Gajanayake, C.J., et al: ‘Aircraft batteries: current trend towards more electric aircraft’, IET Electr. Syst. Transp., 2017, 7, (2), pp. 93103, doi: 10.1049/iet-est.2016.0019.
    24. 24)
      • 33. Tashakor, N., Farjah, E., Ghanbari, T.: ‘A bi-directional battery charger with modular integrated charge equalization circuit’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 21332145, doi: 10.1109/TPEL.2018.2569541.
    25. 25)
      • 4. Zhao, B., Song, Q., Liu, W., et al: ‘Next-generation multi-functional modular intelligent UPS system for smart grid’, IEEE Trans. Ind. Electron., 2013, 60, (9), pp. 36023618.
    26. 26)
      • 3. Abarzadeh, M., Al-Haddad, K.: ‘An improved active-neutral-point-clamped converter with new modulation method for ground power unit application’, IEEE Trans. Ind. Electron., 2019, 66, pp. 203214, doi: 10.1109/TIE.2018.2826484.
    27. 27)
      • 11. Buticchi, G., Barater, D., Costa, L.F., et al: ‘A PV-inspired low-common mode dual active bridge converter for aerospace applications’, IEEE Trans. Power Electron., 2018, 33, pp. 1046710477, doi: 10.1109/TPEL.2018.2801845.
    28. 28)
      • 20. Kostakis, T., Norman, P.J., Galloway, S.J., et al: ‘Demonstration of fast-acting protection as a key enabler for more-electric aircraft interconnected architectures’, IET Electr. Syst. Transp., 2017, 7, (2), pp. 170178, doi: 10.1049/iet-est.2016.0065.
    29. 29)
      • 5. Aamir, M., Mekhilef, S.: ‘An online transformerless uninterruptible power supply (UPS) system with a smaller battery bank for low-power applications’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 233247(in English), doi: 10.1109/Tpel.2016.2537834.
    30. 30)
      • 12. Matsuura, J., Kawahara, K., Yoshifumi, Z.: ‘Optimal control of a hybrid system of photovoltaic and fuel cell in residential use’. 2014 49th Int. Universities Power Engineering Conf. (UPEC), Cluj-Napoca, Romania, 2–5 September 2014, pp. 15, doi: 10.1109/UPEC.2014.6934629.
    31. 31)
      • 23. Abrehdari, M., Sarvi, M.: ‘Comprehensive sharing control strategy for input-series output-parallel connected modular DC–DC converters’, IET Power Electron., 2019, 12, (12), pp. 31053117, doi: 10.1049/iet-pel.2019.0054.
    32. 32)
      • 19. Dai, Z., Lv, S., Mwaniki, J.K., et al: ‘Global accurate estimation of positive- and negative-sequence voltage components for variable frequency AC systems’, IET Power Electron., 2018, 11, (10), pp. 17301737, doi: 10.1049/iet-pel.2017.0503.
    33. 33)
      • 9. Motapon, S.N., Dessaint, L.-A., Al-Haddad, K.: ‘A robust consumption–minimization-based energy management strategy for a fuel cell hybrid emergency power system of more electric aircraft’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 61486156.
    34. 34)
      • 27. Murai, H., Takeda, T., Hirose, K., et al: ‘A study on charge patterns for uninterruptible power supply system with distributed generators’. INTELEC 2009 – 31st Int. Telecommunications Energy Conf., 2009, pp. 15.
    35. 35)
      • 38. Khan, O., Xiao, W.: ‘An efficient modeling technique to simulate and control submodule-integrated PV system for single-phase grid connection’, IEEE Trans. Sustain. Energy, 2016, 7, (1), pp. 96107.
    36. 36)
      • 40. Musavi, F., Gautam, D.S., Eberle, W., et al: ‘A simplified power loss calculation method for PFC boost topologies’. Transportation Electrification Conf. and Expo (ITEC), 2013 IEEE, Detroit, MI, USA, 2013, pp. 15.
    37. 37)
      • 2. Deriszadeh, A., Karabasoglu, O., Ozturk, S.B.: ‘Excitation procedure for brushless wound-rotor synchronous starter generator with seamless transitions’, IET Power Electron., 2019, 12, (11), pp. 28732883, doi: 10.1049/iet-pel.2019.0058.
    38. 38)
      • 29. Nayar, C.V., Ashari, M., Keerthipala, W.W.L.: ‘A grid-interactive photovoltaic uninterruptible power supply system using battery storage and a back up diesel generator’, IEEE Trans. Energy Convers., 2000, 15, (3), pp. 348353(in English), doi: 10.1109/60.875502.
    39. 39)
      • 17. Whyatt, G.A., Chick, L.A.: ‘Electrical generation for more-electric aircraft using solid oxide fuel cells’. Pacific Northwest National Laboratory, Richland, Washington, Tech. Rep. PNNL-21382, 2012.
    40. 40)
      • 10. Venkataramanan, V., Mallikeswaran, A., Srivastava, A.: ‘Analysis of aircraft electric microgrid system with auxiliary power unit using real time simulation’. 2015 IEEE 24th Int. Symp. on Industrial Electronics (ISIE), Buzios, Brazil, 3–5 June 2015, pp. 245250, doi: 10.1109/ISIE.2015.7281476.
    41. 41)
      • 15. Yang, Y., Ye, Q., Tung, L.J., et al: ‘Integrated size and energy management design of battery storage to enhance grid integration of large-scale PV power plants’, IEEE Trans. Ind. Electron., 2018, 65, (1), pp. 394402, doi: 10.1109/TIE.2017.2721878.
    42. 42)
      • 36. Escobar, G., Pettersson, S., Ho, C., et al: ‘Multi-sampling maximum power point tracker (MS-MPPT) to compensate irradiance and temperature changes’, IEEE Trans. Sustain. Energy, 2017, 8, pp. 10961105.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0715
Loading

Related content

content/journals/10.1049/iet-pel.2019.0715
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading