access icon free Study on conducted EMI noise source modelling applied in electromagnetic compatibility analysis based on GA in cooperation with LM

In this study, a new method employing scattering parameters (SPs) method, genetic algorithm (GA) and Levenberg–Marquardt algorithm (LM) is proposed for modelling conducted electromagnetic interference (EMI) noise source impedance. On the basis of the impedance information extracted by traditional SP method, GA is adopted to optimise the impedance information by taking advantage of the fast convergence speed. The obtained values of the RCL parameter are used as a set of initial values. Then, by using the advantage of the high precision of the LM, the initial values obtained by the GA are iteratively calculated. Better results can be obtained by using this combination method. This method improves the processing accuracy while ensuring the processing speed and contributes to the design of conduction EMI filter.

Inspec keywords: genetic algorithms; electromagnetic interference; electromagnetic compatibility

Other keywords: impedance information; scattering parameters method; RCL parameter; electromagnetic compatibility analysis; combination method; conduction EMI filter; conducted EMI noise source; initial values; electromagnetic interference noise source impedance; fast convergence speed; Levenberg–Marquardt algorithm; genetic algorithm; GA

Subjects: Mathematical analysis; Electromagnetic compatibility and interference; Optimisation techniques

References

    1. 1)
      • 17. Hashmi, U., Choudhary, R., Priolkar, J.G.: ‘Online Thevenin equivalent parameter estimation using non-linear and linear recursive least square algorithm’. IEEE Int. Conf. Electrical, Computer and Communication Technologies, Aachen, Germany, 2015, pp. 16.
    2. 2)
      • 8. Zhao, Y., Deng, Y., Yan, W., et al: ‘Error analysis in conductive electromagnetic interference noise source impedance extraction: a simulation and experimental study’, Int. J. Appl. Electromagn. Mech., 2015, 49, (3), pp. 347361.
    3. 3)
      • 24. Zhang, L., Zhang, D., Shui, H., et al: ‘Optimisation design of medium frequency transformer for the offshore dc grid based on multi-objective genetic algorithm’, IET Power Electron., 2018, 10, (15), pp. 21572162.
    4. 4)
      • 3. Guo, T., Chen, D.Y., Lee, F.C.: ‘Separation of the common-mode- and differential-mode-conducted EMI noise’, IEEE Trans. Power Electron., 1996, 11, (3), pp. 480488.
    5. 5)
      • 26. Mengxia, Z., Yang, Z., Wei, Y., et al: ‘Investigation on conducted EMI noise source impedance extraction for electromagnetic compatibility based on SP–GA algorithm’, IET Power Electron., 2019, 12, (7), pp. 17921799.
    6. 6)
      • 11. Wang, S., Odendaal, W.G., Lee, F.C.: ‘Extraction of parasitic parameters of EMI filters using scattering parameters’. Conf. Record of the IEEE Industry Applications Conf. IAS Meeting, Seattle, WA, USA, 2004, vol. 4, pp. 26722678.
    7. 7)
      • 21. Wongprasert, N., Symans, M.D.: ‘Application of a genetic algorithm for optimal damper distribution within the non-linear seismic benchmark building’, J. Eng. Mech., 2014, 130, (4), pp. 401406.
    8. 8)
      • 19. Bouaicha, A., Allagui, H., Mami, A., et al: ‘Parameters identification of the complex impedance model of the PEM fuel cell using MATLAB/Simulink’. Int. Conf. Green Energy Conversion Systems, Hammamet, Tunisia, 2017, pp. 16.
    9. 9)
      • 16. Chen, Y., Zhou, M., Geng, L., et al: ‘Transmission impedance extraction method applied in magneto-rheological damper’, Int. J. Appl. Electromagn. Mech., 2017, 2, pp. 111.
    10. 10)
      • 12. Wang, S., Lee, F.C., Odendaal, W.G.: ‘Using scattering parameters to characterize EMI filters’. Power Electronics Specialists Conf., Aachen, Germany, vol. 1, 2004, pp. 297303.
    11. 11)
      • 27. Renka, R.J.: ‘Non-linear least squares and Sobolev gradients’, Appl. Numer. Math., 2013, 65, (2), pp. 91104.
    12. 12)
      • 22. Kundu, S., Burman, A.D., Giri, S.K., et al: ‘Comparative study between different optimisation techniques for finding precise switching angle for SHE-PWM of three-phase seven-level cascaded H-bridge inverter’, IET Power Electron., 2018, 11, (3), pp. 600609.
    13. 13)
      • 1. Yang, Z., See, K.Y.: ‘A practical approach to EMC education at the undergraduate level’, IEEE Trans. Educ., 2004, 47, (4), pp. 425429.
    14. 14)
      • 4. Himmelfarb, M., Belostotski, L.: ‘On impedance-pattern selection for noise parameter measurement’, IEEE Trans. Microw. Theory Tech., 2016, 64, (1), pp. 258270.
    15. 15)
      • 10. Wang, S., Lee, F.C., Odendaal, W.G.: ‘Improving the performance of boost PFC EMI filters’. 18th IEEE Applied Power Electronics Conf. Exposition, Miami Beach, FL, USA, vol. 1, 2003, pp. 368374.
    16. 16)
      • 25. Hajizadeh, M., Fathi, S.H.: ‘Fundamental frequency switching strategy for grid-connected cascaded H-bridge multilevel inverter to mitigate voltage harmonics at the point of common coupling’, IET Power Electron., 2016, 9, (12), pp. 23872393.
    17. 17)
      • 15. Wang, S., Lee, F.C., Wyk, J.D.V.: ‘A study of integration of parasitic cancellation techniques for EMI filter design with discrete components’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 30943102.
    18. 18)
      • 20. Lahmar, M., Liao, Y.: ‘Accurate methods for estimating transmission line parameters using synchronized and unsynchronized data’. 2017 Int. Energy and Sustainability Conf. (IESC), Farmingdale, NY, USA, 2017, pp. 15.
    19. 19)
      • 13. Wang, S., Lee, F.C., Odendaal, W.G.: ‘Characterization, evaluation, and design of noise separator for conducted EMI noise diagnosis’, IEEE Trans. Power Electron., 2005, 20, (4), pp. 974982.
    20. 20)
      • 5. Dongbing, Z., Chen, D.Y., Nave, M.J., et al: ‘Measurement of noise source impedance of off-line converters’, IEEE Trans. Power Electron., 2000, 15, (5), pp. 820825.
    21. 21)
      • 2. See, K.Y.: ‘Network for conducted EMI diagnosis’, Electron. Lett., 1999, 35, (17), p. 1446.
    22. 22)
      • 9. Zhao, Y., See, K.Y., Li, S.J., et al: ‘Current probe method applied in conductive electromagnetic compatibility (EMC)’. Int. Conf. Microwave and Millimeter Wave Technology, Nanjing, People's Republic of China, 2008, pp. 14421445.
    23. 23)
      • 14. Wang, S., Lee, F.C., Odendaal, W.G.: ‘Characterization and parasitic extraction of EMI filters using scattering parameters’, IEEE Trans. Power Electron., 2005, 20, (2), pp. 502510.
    24. 24)
      • 6. Tarateeraseth, V., See, K.Y., Canavero, F.G., et al: ‘Systematic electromagnetic interference filter design based on information from in-circuit impedance measurements’, IEEE Trans. Electromagn. Compat., 2010, 52, (3), pp. 588598.
    25. 25)
      • 18. Maes, H., Zivanovic, M., Schoukens, J., et al: ‘Estimating respiratory impedance at breathing frequencies using regularized least squares on forced oscillation technique measurements’, IEEE Trans. Instrum. Meas., 2017, 99, pp. 113.
    26. 26)
      • 7. Li, K.R., See, K.Y.: ‘Inductive coupled in-circuit impedance monitoring of electrical system using two-port ABCD network approach’, IEEE Trans. Instrum. Meas., 2015, 64, (9), pp. 24892495.
    27. 27)
      • 23. Ahmed, M.M., Saad, M., Marizan, M.: ‘Selective harmonic elimination in multilevel inverter using hybrid APSO algorithm’, IET Power Electron., 2018, 11, (10), pp. 16731680.
    28. 28)
      • 28. Yamashita, N., Fukushima, M.: ‘On the Rate of Convergence of the Levenberg-Marquardt Method’ in Alefeld, G., Chen, X. (Ed.): Topics in Numerical Analysis With Special Emphasis on Nonlinear Problems, (Springer Wien New York Press, 2001), pp. 239249.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0696
Loading

Related content

content/journals/10.1049/iet-pel.2019.0696
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading