access icon free Improved super-twisting sliding mode control of a stand-alone DFIG-DC system with harmonic current suppression

This study presents an improved super-twisting sliding mode (SSM) approach to a stand-alone doubly fed induction generator (DFIG) for direct current (DC) generation system. By taking the uncertainties into consideration, an improved SSM regulator based on an extended state observer (ESO) is proposed to enhance the robustness of DC-voltage regulation. Moreover, a novel sinusoidal rotor current calculation method is proposed to generate sinusoidal reference of rotor current. A resonant-based ESO (R-ESO) SSM approach is proposed to regulate rotor current. By applying the R-ESO to estimate the model-related part of DFIG, the tracking performance with respect to a sinusoidal reference is improved. Then, the suppression ability to fifth and seventh harmonic currents are enhanced. Finally, both simulations and experiments on a 6-kW DFIG-DC system are provided to show the effectiveness of DC-voltage regulation and harmonic current suppression of the proposed approach.

Inspec keywords: rotors; asynchronous generators; variable structure systems; observers; voltage control

Other keywords: induction generator; seventh harmonic currents; improved SSM regulator; R-ESO; DC-voltage regulation; extended state observer; harmonic current suppression; novel sinusoidal rotor current calculation method; suppression ability; fifth currents; sliding mode control; direct current generation system; sinusoidal reference; sliding mode approach; resonant-based ESO SSM approach; DFIG-DC system

Subjects: Voltage control; Multivariable control systems; Asynchronous machines; Control of electric power systems

References

    1. 1)
      • 26. Mu, C., Sun, C.: ‘A new finite time convergence condition for super-twisting observer based on Lyapunov analysis’, Asian J. Control, 2015, 17, (3), pp. 111.
    2. 2)
      • 10. Lacchetti, M.F., Marques, G.D., Perini, R.: ‘Operation and design issues of a doubly fed induction generator stator connected to a dc-net by a diode rectifier’, IET Electr. Power Appl., 2014, 8, (8), pp. 310319.
    3. 3)
      • 20. Misra, H., Jain, A.K.: ‘Analysis of stand-alone DFIG-DC system and DC voltage regulation with reduced sensors’, IEEE Trans. Ind. Electron., 2017, 64, (6), pp. 44024412.
    4. 4)
      • 8. Nian, H., Zeng, R.: ‘Improved control strategy for stand-alone distributed generation system under unbalanced and non-linear loads’, IET Renew. Power Gener., 2011, 5, (5), pp. 323331.
    5. 5)
      • 2. Shang, L., Sun, D., Hu, J.: ‘Sliding-mode-based direct power control of grid-connected voltage-sourced inverters under unbalanced network conditions’, IET Power Electron., 2011, 4, (5), pp. 570579.
    6. 6)
      • 1. Taraft, S., Rekioua, D., Aouzellag, D., et al: ‘A proposed strategy for power optimization of a wind energy conversion system connected to the grid’, Energy Convers. Manage., 2015, 101, pp. 489502.
    7. 7)
      • 11. Marques, G.D., Iacchetti, M.F.: ‘Stator frequency regulation in a field-oriented controlled DFIG connected to a DC link’, IEEE Trans. Ind. Electron., 2014, 61, (11), pp. 59305939.
    8. 8)
      • 9. Wei, F., Zhang, X., Vilathgamuwa, D.M., et al: ‘Mitigation of distorted and unbalanced stator voltage of stand-alone doubly fed induction generators using repetitive control technique’, IET Electr. Power Appl., 2013, 7, (8), pp. 654663.
    9. 9)
      • 4. Bossoufi, B., Karim, M., Lagrioui, A., et al: ‘Observer backstepping control of DFIG-generators for wind turbines variable-speed: FPGA-based implementation’, Renew. Energy, 2015, 81, pp. 903917.
    10. 10)
      • 3. Li, S., Wang, H., Tian, Y., et al: ‘Direct power control of DFIG wind turbine systems based on an intelligent proportional-integral sliding mode control’, ISA Trans., 2016, 64, pp. 431439.
    11. 11)
      • 23. Misra, H., Jain, A.K.: ‘Harmonics reduction in standalone DFIG-DC system by shunt active filter controlled in stator flux reference frame’, Sadhana-Academy Proc. Eng. Sci., 2018, 43, (6), pp. 111.
    12. 12)
      • 12. Iacchetti, M.F., Marques, G.D., Perini, R.: ‘A scheme for the power control in a DFIG connected to a DC bus via a diode rectifier’, IEEE Trans. Power Electron., 2015, 30, (3), pp. 12861296.
    13. 13)
      • 27. Hao, L., Wang, X., Blaabjerg, F., et al: ‘Impedance analysis of SOGI-FLL-based grid synchronization’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 74097413.
    14. 14)
      • 28. Moreno, J.A., Osorio, M.: ‘Strict Lyapunov functions for the super-twisting algorithm’, IEEE Trans. Autom. Control, 2012, 57, (4), pp. 10351040.
    15. 15)
      • 14. Iacchetti, M.F., Marques, G.D., Perini, R.: ‘Torque ripple reduction in a DFIG-DC system by resonant current controllers’, IEEE Trans. Power Electron., 2015, 30, (8), pp. 42444254.
    16. 16)
      • 15. Nian, H., Wu, C., Cheng, P.: ‘Direct resonant control strategy for torque ripple mitigation of DFIG connected to DC link through diode rectifier on stator’, IEEE Trans. Power Electron., 2017, 32, (9), pp. 69366945.
    17. 17)
      • 22. Gundavarapu, A., Misra, H., Jain, A.K.: ‘Direct torque control scheme for DC voltage regulation of the standalone DFIG-DC system’, IEEE Trans. Ind. Electron., 2017, 64, (5), pp. 35023512.
    18. 18)
      • 29. Krstic, M., Kokotovic, P.V., Kanellakopoulos, I.: ‘Nonlinear and adaptive control design’ (John Wiley Sons Press, USA, 1995, 1st edn.).
    19. 19)
      • 21. Marues, G.D., Iacchetti, M.F.: ‘Sensorless frequency and voltage control in the stand-alone DFIG-DC system’, IEEE Trans. Ind. Electron., 2017, 64, (3), pp. 19491957.
    20. 20)
      • 24. Evangelista, C., Puleston, P., Valenciaga, F., et al: ‘Lyapunov-designed super-twisting sliding mode control for wind energy conversion optimization’, IEEE Trans. Ind. Electron., 2013, 60, (2), pp. 538545.
    21. 21)
      • 25. Sadeghi, R., Madani, S.M., Ataei, M., et al: ‘Super-twisting sliding mode direct power control of a brushless doubly fed induction generator’, IEEE Trans. Ind. Electron., 2018, 65, (11), pp. 91479156.
    22. 22)
      • 7. Phan, V.-T., Lee, H.-H.: ‘Performance enhancement of stand-alone DFIG systems with control of rotor and load side converters using resonant controllers’, IEEE Trans. Ind. Appl., 2012, 48, (1), pp. 199210.
    23. 23)
      • 16. Marues, G.D., Iacchetti, M.F.: ‘Minimization of torque ripple in the DFIG-DC system via predictive delay compensation’, IEEE Trans. Ind. Electron., 2018, 65, (1), pp. 103113.
    24. 24)
      • 19. Misra, H., Gundavarapu, A., Jain, A.K.: ‘Control scheme for DC voltage regulation of stand-alone DFIG-DC system’, IEEE Trans. Ind. Electron., 2017, 64, (4), pp. 27002708.
    25. 25)
      • 5. Wang, X., Sun, D., Zhu, Z.Q.: ‘Resonant-based backstepping direct power control strategy for DFIG under both balanced and unbalanced grid conditions’, IEEE Trans. Ind. Appl., 2017, 53, (5), pp. 48214830.
    26. 26)
      • 18. Wu, C., Nian, H.: ‘Sinusoidal current operation of a DFIG-DC system without stator voltage sensors’, IEEE Trans. Ind. Electron., 2018, 65, (8), pp. 62506258.
    27. 27)
      • 6. Cheng, C., Cheng, P., Nian, H., et al: ‘Model predictive stator current control of doubly fed induction generator during network unbalance’, IET Power Electron., 2017, 11, (1), pp. 120128.
    28. 28)
      • 13. Marues, G.D., Iacchetti, M.F.: ‘Inner control method and frequency regulation of a DFIG connected to a dc link’, IEEE Trans. Energy Convers., 2014, 29, (2), pp. 435444.
    29. 29)
      • 17. Wu, C., Nian, H.: ‘An improved repetitive control of DFIG-DC system for torque suppression’, IEEE Trans. Power Electron., 2018, 33, (9), pp. 76347644.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0691
Loading

Related content

content/journals/10.1049/iet-pel.2019.0691
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading