Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Isolated H-bridge DC–DC converter integrated transformerless DVR for power quality improvement

Isolated H-bridge DC–DC converter integrated transformerless DVR for power quality improvement

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a new H-bridge DC-DC converter-based transformerless dynamic voltage restorer topology (DVR). The proposed system can compensate balanced and unbalanced voltage sag/swell that are the most common electrical power quality problems and offers advantages over conventional DVR topologies by providing the isolation with high-frequency transformer (HFT) rather than bulky injection transformers and by employing shunt converter to eliminate the requirement of an energy storage unit. The system is composed of H-bridge DC–DC converter equipped with a HFT with one primary and three secondary windings and transformerless DVR. The single-phase shift modulation method is used for each series converter independently to provide the bidirectional power flow control of DC–DC converter, whereas in-phase compensation method with a hybrid detection algorithm is used to mitigate voltage sag/swell. An LC filter is employed to attenuate the switching ripple harmonics on the output of the DVR. The performance of the proposed system is verified experimentally on a three-phase, three-wire, 380 V, 10 kVA prototype.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0687
Loading

Related content

content/journals/10.1049/iet-pel.2019.0687
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address