Your browser does not support JavaScript!

Isolated H-bridge DC–DC converter integrated transformerless DVR for power quality improvement

Isolated H-bridge DC–DC converter integrated transformerless DVR for power quality improvement

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a new H-bridge DC-DC converter-based transformerless dynamic voltage restorer topology (DVR). The proposed system can compensate balanced and unbalanced voltage sag/swell that are the most common electrical power quality problems and offers advantages over conventional DVR topologies by providing the isolation with high-frequency transformer (HFT) rather than bulky injection transformers and by employing shunt converter to eliminate the requirement of an energy storage unit. The system is composed of H-bridge DC–DC converter equipped with a HFT with one primary and three secondary windings and transformerless DVR. The single-phase shift modulation method is used for each series converter independently to provide the bidirectional power flow control of DC–DC converter, whereas in-phase compensation method with a hybrid detection algorithm is used to mitigate voltage sag/swell. An LC filter is employed to attenuate the switching ripple harmonics on the output of the DVR. The performance of the proposed system is verified experimentally on a three-phase, three-wire, 380 V, 10 kVA prototype.


    1. 1)
      • 19. Sree, H., Mohan, N.: ‘Voltage sag mitigation using a high-frequency-link cycloconverter-based DVR’. IEEE Industrial Electronics Society IEEE Int. Conf. Industrial Electronics, Control and Instrumentation, Nagoya, Japan, October 2000, pp. 344349.
    2. 2)
      • 8. Kumar, C., Mishra, M.K.: ‘Predictive voltage control of transformerless dynamic voltage restorer’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 26932697.
    3. 3)
      • 14. Costa, L.F., Carne, G.D., Buticchi, G., et al: ‘The smart transformer: a solid-state transformer tailored to provide ancillary services to the distribution grid’, IEEE Power Electron. Mag., 2017, 4, (2), pp. 5667.
    4. 4)
      • 20. Hosseini, S.H., Sharifian, M.B.B., Sabahi, M., et al: ‘Bi-directional power electronic transformer-based compact dynamic voltage restorer’. IEEE Power and Energy Society General Meeting, Calgary, AB, Canada, July 2009, pp. 15.
    5. 5)
      • 33. Inci, M., Bayindir, K.C., Tümay, M.: ‘Improved synchronous reference frame based controller method for multifunctional compensation’, Electr. Power Syst. Res., 2016, 141, pp. 500509.
    6. 6)
      • 22. Rodriguez, J., Lai, J.S., Peng, F.Z.: ‘Multilevel inverters: a survey of topologies, controls, and applications’, IEEE Trans. Ind. Electron., 2002, 49, (4), pp. 724738.
    7. 7)
      • 1. Bollen, M.H.J.: ‘Understanding power quality problems: voltage sags and interruptions’ (IEEE Press, New York, 2001).
    8. 8)
      • 27. Hou, N., Song, W., Wu, M.: ‘Minimum-current-stress scheme of dual active bridge dc–dc converter with unified phase shift control’, IEEE Trans. Power Electron., 2016, 31, (12), pp. 85528561.
    9. 9)
      • 17. Jimichi, T, Fujita, H, Akagi, H.: ‘A dynamic voltage restorer equipped with a high-frequency isolated dc–dc converter’, IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, September 2009, pp. 14591465.
    10. 10)
      • 11. Komurcugil, H., Biricik, S.: ‘Time-varying and constant switching frequency-based sliding-mode control methods for transformerless DVR employing half-bridge VSI’, IEEE Trans. Ind. Electron., 2017, 64, (4), pp. 25702579.
    11. 11)
      • 35. Nielsen, J.G., Blaabjerg, F.: ‘Control strategies for dynamic voltage restorer compensating voltage sags with phase jump’. IEEE Applied Power Electronics Conf. Exposition, Anaheim, CA, USA, March 2001.
    12. 12)
      • 34. Aredes, M., Haffner, J., Heumann, K.: ‘Three-phase four-wire shunt active filter control strategies’, IEEE Trans. Power Electron., 1997, 12, (2), pp. 311318.
    13. 13)
      • 38. IEEE, ‘Recommended practices and requirements for harmonic control in electrical power systems’, IEEE Std., 1992, 112, pp. 5191992.
    14. 14)
      • 15. Peña-Alzola, R., Gohil, G., Mathe, L., et al: ‘Review of modular power converters solutions for smart transformer in distribution system’. IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, September 2013, pp. 380387.
    15. 15)
      • 7. Lu, Y., Xiao, G., Lei, B., et al; ‘A transformerless active voltage quality regulator with the parasitic boost circuit’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 17461756.
    16. 16)
      • 6. Kenneth, E.K., Choi, S.S., Mahinda Vilathgamuwa, D.: ‘Analysis of series compensation and DC-link voltage controls of a transformerless self-charging dynamic voltage restorer’, IEEE Trans. Power Deliv., 2004, 19, (3), pp. 15111518.
    17. 17)
      • 32. Karimi-Ghartermani, M., Iravani, M.R.: ‘A non-linear adaptive filter for online signal analysis in power systems: applications’, IEEE Trans. Power Deliv., 2002, 17, (2), pp. 617622.
    18. 18)
      • 9. Zhou, M., Sun, Y., Su, M., et al: ‘Transformer-less dynamic voltage restorer based on a three-leg ac/ac converter’, IET Power Electron., 2018, 11, (13), pp. 20452052.
    19. 19)
      • 24. Al-Hadidi, H.K., Gole, A.M., Jacobson, D.A.: ‘Minimum power operation of cascade inverter-based dynamic voltage restorer’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 889898.
    20. 20)
      • 25. Li, B.H., Choi, S.S., Vilathgamuwa, D.M.: ‘Transformerless dynamic voltage restorer’, IEE Proc., Gener. Transm. Distrib., 2002, 149, (3), pp. 263273.
    21. 21)
      • 37. Savrun, M.M., Tan, A., Köroğlu, T., et al: ‘DSP controlled voltage disturbance generator’, J. Electr. Syst., 2018, 14, (1), pp. 174187.
    22. 22)
      • 23. Al-Hadidi, H.K., Gole, A.M., Jacobson, D.A.: ‘A novel configuration for a cascade inverter-based dynamic voltage restorer with reduced energy storage requirements’, IEEE Trans. Power Deliv., 2008, 23, (2), pp. 881888.
    23. 23)
      • 2. Nielsen, J.G., Blaabjerg, F.A.: ‘A detailed comparison of system topologies for dynamic voltage restorers’, IEEE Trans. Ind. Appl., 2005, 41, (5), pp. 12721280.
    24. 24)
      • 16. Jimichi, T., Fujita, H., Akagi, H.: ‘A dynamic voltage restorer equipped with a high-frequency isolated dc–dc converter’, IEEE Trans. Ind. Appl., 2011, 47, (1), pp. 169175.
    25. 25)
      • 29. Akagi, H., Yamagishi, T., Tan, N.M.L., et al: ‘Power-loss breakdown of a 750 V 100 kW 20 kHz bidirectional isolated dc–dc converter using SiC-MOSFET/SBD dual modules’, IEEE Trans. Ind. Appl., 2015, 51, (1), pp. 420428.
    26. 26)
      • 5. Choi, S.S., Li, J.D., Vilathgamuwa, D.M.: ‘A generalized voltage compensation strategy for mitigating the impacts of voltage sags/swells’, IEEE Trans. Power Deliv., 2005, 20, (3), pp. 22892297.
    27. 27)
      • 31. Koroglu, T., Tan, A., Savrun, M.M., et al: ‘Implementation of a novel hybrid UPQC topology endowed with an isolated bi-directional DC–DC converter at DC link’, IEEE J. Emerg. Sel. Top. Power Electron., 2019, Early Access, doi: 10.1109/JESTPE.2019.2898369.
    28. 28)
      • 13. Fuentes, C.D., Rojas, C.A., Renaudineau, H., et al: ‘Experimental validation of a single dc bus cascaded H-bridge multilevel inverter for multistring photovoltaic systems’, IEEE Trans. Ind. Electron., 2017, 64, (2), pp. 930934.
    29. 29)
      • 3. Jowder, F.A.L.: ‘Design and analysis of dynamic voltage restorer for deep voltage sag and harmonic compensation’, IET Gener. Transm. Distrib., 2009, 3, (5), pp. 547560.
    30. 30)
      • 36. Karshenas, H.R., Daneshpajooh, H., Safaee, A., et al: ‘Bidirectional dc–dc converters for energy storage systems’, Energy storage in the emerging era of smart grids. 2011, Chapter 8.
    31. 31)
      • 28. Dutta, S., Hazra, S., Bhattacharya, S.: ‘A digital predictive current-mode controller for single-phase high-frequency transformer-isolated dual-active bridge dc-to-dc converter’, IEEE Trans. Ind. Electron., 2016, 63, (9), pp. 59435952.
    32. 32)
      • 30. Tan, N.M., Abe, T., Akagi, H.: ‘Optimal design of a high-efficiency bidirectional isolated dc–dc converter across a wide range of power transfer’. IEEE Int. Conf. Power Energy, Kota Kinabalu, Malaysia, December 2012, pp. 2227.
    33. 33)
      • 10. Lam, C.S., Wong, M.C., Han, Y.D.: ‘Voltage swell and overvoltage compensation with unidirectional power flow controlled dynamic voltage restorer’, IEEE Trans. Power Deliv., 2008, 23, (4), pp. 25132521.
    34. 34)
      • 4. Shi, J., Tang, Y., Yang, K., et al: ‘SMES based dynamic voltage restorer for voltage fluctuations compensation’, IEEE Trans. Appl. Supercond., 2010, 20, (3), pp. 13601364.
    35. 35)
      • 18. Sree, H., Mohan, N.: ‘High-frequency-link cycloconverter-based DVR for voltage sag mitigation’. IEEE Power Modulator Symp., Norfolk, VA, USA, June 2000, pp. 97100.
    36. 36)
      • 26. Hiltunen, J., Vaisanen, V., Jutunen, R., et al: ‘Variable-frequency phase shift modulation of dual active bridge converter’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 71387148.
    37. 37)
      • 21. Goharrizi, A.Y., Hosseini, S.H., Sabahi, M., et al: ‘Three-phase HFL-DVR with independently controlled phases’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 17061718.
    38. 38)
      • 12. Sochor, P., Akagi, H.: ‘Theoretical comparison in energy-balancing capability between star- and delta-configured modular multilevel cascade inverters for utility-scale photovoltaic systems’, IEEE Trans. Power Electron., 2016, 31, (3), pp. 19801992.

Related content

This is a required field
Please enter a valid email address