access icon free Power conversion interface with harmonic suppression for a DC grid and single-phase utility

This study proposes a power conversion interface for a DC grid and a single-phase utility. The proposed power conversion interface is configured using an interleaved AC–DC power converter and a DC hybrid power filter. The interleaved AC–DC power converter controls the real power between the DC grid and the single-phase utility in both directions. The interleaved AC–DC power converter can effectively reduce the high-frequency harmonic currents at both the AC side and DC side. A new current-sharing control method is used to equalise the currents in the interleaved power-electronic arms using only one current sensor in the interleaved AC–DC power converter. The DC hybrid power filter is connected between the DC bus of the interleaved AC–DC power converter and the DC grid. The DC hybrid power filter is controlled to be operated as a virtual low-frequency AC resistor connected to the DC grid in series and the low-frequency harmonic for the DC input current of the interleaved AC–DC power converter is suppressed. Accordingly, the problems of harmonic currents for a power conversion interface used between the DC grid and the single-phase utility are attenuated. A hardware prototype is developed to verify the performance of the proposed power conversion interface.

Inspec keywords: power conversion harmonics; power harmonic filters; AC-DC power convertors; harmonics suppression; power grids

Other keywords: DC grid; virtual low-frequency AC resistor; high-frequency harmonic currents; harmonic suppression; DC hybrid power filter; single-phase utility; power conversion interface; interleaved AC-DC power converter

Subjects: Power electronics, supply and supervisory circuits; AC-DC power convertors (rectifiers); Control of electric power systems; Other power apparatus and electric machines

References

    1. 1)
      • 21. Wu, J.C., Jou, H.L., Wu, K.D., et al: ‘Three-phase four-wire DC hybrid power filter using a small power converter’, Electr. Power Syst. Res., 2012, 87, pp. 1321.
    2. 2)
      • 10. Suyong, C., Yujin, S., Sukin, P., et al: ‘Digital current sharing method for parallel interleaved dc–dc converters using input ripple voltage’, IEEE Trans. Ind. Inf., 2012, 8, (3), pp. 536544.
    3. 3)
      • 5. Peri, P.G.V., Paliwal, P., Joseph, F.C.: ‘ACMC-based hybrid AC/LVDC micro-grid’, IET Renew. Power Gener., 2017, 11, (4), pp. 521528.
    4. 4)
      • 16. Bhowmick, S., Umanand, L.: ‘Design and analysis of the low device stress active power decoupling for single-phase grid connection for a wide range of power factor’, IEEE J. Emerging Sel. Topics Power Electron., 2018, 6, (4), pp. 19211931.
    5. 5)
      • 17. Tang, Y., Blaabjerg, F., Loh, P.C., et al: ‘Decoupling of fluctuating power in single-phase systems through a symmetrical half-bridge circuit’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 18551865.
    6. 6)
      • 14. Hong, F., Liu, J., Ji, B., et al: ‘Interleaved dual buck full-bridge three-level inverter’, IEEE Trans. Power Electron., 2016, 31, (2), pp. 964974.
    7. 7)
      • 23. Wu, J.C., Jou, H.L., Lin, T.Y.: ‘New DC hybrid filter for attenuating low-frequency ripple of AC-DC power converter’, Electr. Power Compon. Syst., 2019, 47, (1), pp. 19.
    8. 8)
      • 18. Li, S., Qi, W., Tan, S.-C., et al: ‘Integration of an active filter and a single-phase AC/DC converter with reduced capacitance requirement and component count’, IEEE Trans. Power Electron., 2016, 31, (6), pp. 41214137.
    9. 9)
      • 13. Marcos-Pastor, A., Vidal-Idiarte, E., Cid-Pastor, A., et al: ‘Interleaved digital power factor correction based on the sliding-mode approach’, IEEE Trans. Power Electron., 2016, 31, (6), pp. 46414653.
    10. 10)
      • 12. Capella, G.J., Gabiola, I., Pou, J., et al: ‘Minimum signal modulation scheme based on a single carrier for interleaved operation of parallel phase legs in voltage source converters’, IET Power Electron., 2014, 7, (5), pp. 13051312.
    11. 11)
      • 4. Ye, Q., Mo, R., Li, H.: ‘Low-frequency resonance suppression of a dual-active bridge DC/DC converter enabled DC microgrid’, IEEE J. Emerging Sel. Topics Power Electron., 2017, 5, (3), pp. 982994.
    12. 12)
      • 3. Mishra, S., Hussain, I., Pathak, G., et al: ‘Bhim singh dPLL-based control of a hybrid wind–solar grid connected inverter in the distribution system’, IET Power Electron., 2018, 11, (5), pp. 952960.
    13. 13)
      • 7. Amini, J., Moallem, M.: ‘A fault-diagnosis and fault-tolerant control scheme for flying capacitor multilevel inverters’, IEEE Trans. Ind. Electron., 2017, 64, (3), pp. 18181826.
    14. 14)
      • 19. Dong, D., Cvetkovic, I., Boroyevich, D.W., et al: ‘Grid-interface bidirectional converter for residential dc distribution systems—part one: high-density two-stage topology’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 16551666.
    15. 15)
      • 20. Chiang, H.C., Ma, T.T., Cheng, Y.H., et al: ‘Design and implementation of a hybrid regenerative power system combining grid-tie and uninterruptible power supply functions’, IET Renew. Power Gener., 2010, 4, (1), pp. 8589.
    16. 16)
      • 22. Akagi, H., ‘Active harmonic filters’, Proc. IEEE, 2005, 93, (12), pp. 21282141.
    17. 17)
      • 11. Shukla, K., Malyala, V., Maheshwari, R.: ‘A novel carrier-based hybrid PWM technique for minimization of line current ripple in two parallel interleaved two-level VSIs’, IEEE Trans. Ind. Electron., 2018, 65, (3), pp. 19081918.
    18. 18)
      • 8. Schaefer, M., Goetze, W., Hofmann, M., et al: ‘Direct current control for grid-connected diode-clamped inverters’, IEEE Trans. Ind. Electron., 2017, 64, (4), pp. 30673074.
    19. 19)
      • 6. Jiang, W., Huang, L., Zhang, L., et al: ‘Control of active power exchange with auxiliary power loop in a single-phase cascaded multilevel converter-based energy storage system’, IEEE Trans. Power Electron., 2017, 32, (2), pp. 15181532.
    20. 20)
      • 15. Sun, Y., Liu, Y., Su, M., et al: ‘Review of active power decoupling topologies in single-phase systems’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 47784794.
    21. 21)
      • 2. Junior, C.J.O., Pires, L.P., Freitas, L. C., et al: ‘Design, analysis and performance of a bidirectional solar inverter with a global and independent maximum power extraction technique’, IET Power Electron., 2018, 11, (1), pp. 221228.
    22. 22)
      • 24. Fan, J.W.T., Yeung, R.S.C., Chung, H.S.H.: ‘Optimized hybrid PWM scheme for mitigating zero-crossing distortion in totem-pole bridgeless PFC’, IEEE Trans. Power Electron., 2019, 34, (1), pp. 928942.
    23. 23)
      • 9. Kim, S., Enjeti, P.N.: ‘Control of multiple single-phase PFC modules with a single low-cost DSP’, IEEE Trans. Ind. Appl., 2003, 39, (5), pp. 13791385.
    24. 24)
      • 1. Liserre, M., Sauter, T., Hung, J. Y.: ‘Future energy systems: integrating renewable energy sources into the smart power grid through industrial electronics’, IEEE Ind. Electron. Mag., 2010, 4, (1), pp. 1837.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0630
Loading

Related content

content/journals/10.1049/iet-pel.2019.0630
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading