Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Stability analysis of modular multilevel converter based on harmonic state-space theory

Modular multilevel converter (MMC) is regarded as one of the most potential topologies for high-voltage direct current transmission system. However, the multi-frequency behaviour and complex control structure of MMC bright great challenges to the stability analysis, identification of factors affecting stability, and controller design. To address this problem, the harmonic state-space (HSS) theory is applied to MMC in this study. First, the small-signal HSS model is established to describe the multi-frequency behaviour of MMC. Capacitor voltage control, circulating current control, and output current control are also taken into account in the modelling. On this basis, the stability analysis is performed by evaluating the eigenvalues of the HSS model, and participation factor is introduced to identify the factors affecting stability. In addition, the proposed approach reveals the influence of different controllers on the system stability, providing guidance for the tuning of multiple controller parameters. Finally, the effectiveness and accuracy of the proposed approach are verified by simulation and experiment results.

References

    1. 1)
      • 23. Jamshidifar, A., Jovcic, D.: ‘Small-signal dynamic DQ model of modular multilevel converter for system studies’, IEEE Trans. Power Deliv., 2016, 31, (1), pp. 191199.
    2. 2)
      • 11. Sun, J., Liu, H.: ‘Sequence impedance modeling of modular multilevel converters’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (4), pp. 14271443.
    3. 3)
      • 9. Debnath, S., Qin, J., Saeedifard, M., et al: ‘Control and stability analysis of modular multilevel converter under low-frequency operation’, IEEE Trans. Ind. Electron., 2015, 62, (9), pp. 53295339.
    4. 4)
      • 8. Antonopoulos, A., Angquist, L., Harnefors, L., et al: ‘Global asymptotic stability of modular multilevel converters’, IEEE Trans. Ind. Electron., 2014, 61, (2), pp. 603612.
    5. 5)
      • 24. Golestan, S., Ramezani, M., Guerrero, J.M.: ‘Moving average filter based phase-locked loops: performance analysis and design guidelines’, IEEE Trans. Power Electron., 2014, 29, (6), pp. 27502763.
    6. 6)
      • 14. Xu, Z., Li, B., Wang, S., et al: ‘Generalized single-phase harmonic state space modeling of the modular multilevel converter with zero-sequence voltage compensation’, IEEE Trans. Ind. Electron., 2018, 66, (8), pp. 64166426.
    7. 7)
      • 21. Zhu, S., Liu, P.K., Qin, L.: ‘Reduced-order dynamic model of modular multilevel converter in long time-scale and its application in power system low-frequency oscillation analysis’, IEEE Trans. Power Deliv., 2019. Early Access doi: 10.1109/TPWRD.2019.2900070.
    8. 8)
      • 10. Chaudhuri, N.R., Oliveira, R., Yazdani, A.: ‘Stability analysis of vector-controlled modular multilevel converters in linear time-periodic framework’, IEEE Trans. Power Electron., 2016, 31, (7), pp. 52555269.
    9. 9)
      • 7. Hagiwara, M., Akagi, H.: ‘Control and experiment of pulse width modulated modular multilevel converters’, IEEE Trans. Power Electron., 2009, 24, (7), pp. 17371746.
    10. 10)
      • 19. Lyu, J., Cai, X., Molinas, M.: ‘Optimal design of controller parameters for improving the stability of MMC-HVDC for wind farm integration’, IEEE J. Emerging Sel. Topics Power Electron., 2018, 6, (1), pp. 4053.
    11. 11)
      • 22. Jovcic, D., Jamshidifar, A.A.: ‘Phasor model of modular multilevel converter with circulating current suppression control’, IEEE Trans. Power Deliv., 2015, 30, (4), pp. 18891897.
    12. 12)
      • 4. Xu, J., Zhao, P., Zhao, C.: ‘Reliability analysis and redundancy configuration of MMC with hybrid submodule topologies’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 27202729.
    13. 13)
      • 12. Bessegato, L., Harnefors, L., Ilves, K., et al: ‘A method for the calculation of the AC-Side admittance of a modular multilevel converter’, IEEE Trans. Power Electron., 2019, 34, (5), pp. 41614172.
    14. 14)
      • 16. Orillaza, J.R.C., Wood, A.R.: ‘Harmonic state-space model of a controlled TCR’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 197205.
    15. 15)
      • 15. Love, G.N., Wood, A.R.: ‘Harmonic state space model of power electronics’. Proc. Int. Conf. Harmonics Quality of Power, Wollongong, Australia, 2008, pp. 16.
    16. 16)
      • 25. Kundur, P.S.: ‘Power system stability and control’ (McGraw-Hill, New York, NY, USA, 1994).
    17. 17)
      • 2. Malinowski, M., Gopakumar, K., Rodriguez, J., et al: ‘A survey on cascaded multilevel inverters’, IEEE Trans. Ind. Electron., 2010, 57, (7), pp. 21972206.
    18. 18)
      • 13. Bessegato, L., Ilves, K., Harnefors, L., et al: ‘Effects of control on the AC-Side admittance of a modular multilevel converter’, IEEE Trans. Power Electron., 2018, 34, (8), pp. 72067220.
    19. 19)
      • 5. Soong, T., Lehn, P.W.: ‘Evaluation of emerging modular multilevel converters for BESS applications’, IEEE Trans. Power Deliv., 2014, 29, (5), pp. 20862094.
    20. 20)
      • 3. Bina, M.T.: ‘A transformerless medium-voltage STATCOM topology based on extended modular multilevel converters’, IEEE Trans. Power Electron., 2011, 26, (5), pp. 15341545.
    21. 21)
      • 20. Wang, J., Wang, P.: ‘Decoupled power control for direct-modulation-based modular multilevel converter with improved stability’, IEEE Trans. Ind. Electron., 2019, 66, (7), pp. 52645274.
    22. 22)
      • 18. Lyu, J., Zhang, X., Cai, X.: ‘Harmonic state-space based small-signal impedance modeling of a modular multilevel converter with consideration of internal harmonic dynamics’, IEEE Trans. Power Electron., 2018, 34, (3), pp. 21342148.
    23. 23)
      • 6. Li, T., Gole, A.M., Zhao, C.: ‘Harmonic instability in MMC-HVDC converters resulting from internal dynamics’, IEEE Trans. Power Deliv., 2016, 31, (4), pp. 17381747.
    24. 24)
      • 17. Salis, V., Costabeber, A., Cox, S.M.: ‘Stability boundary analysis in single-phase grid-connected inverters with PLL by LTP theory’, IEEE Trans. Power Electron., 2018, 33, (5), pp. 40234036.
    25. 25)
      • 1. Kouro, S., Malinowski, M., Gopakumar, K.: ‘Recent advances and industrial applications of multilevel converters’, IEEE Trans. Ind. Electron., 2010, 57, (8), pp. 25532580.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0613
Loading

Related content

content/journals/10.1049/iet-pel.2019.0613
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address