Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Improved TPS control for DAB DC–DC converter to eliminate dual-side flow back currents

Improved TPS control for DAB DC–DC converter to eliminate dual-side flow back currents

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, the essential reason for causing the dual-side flow back currents in the isolated dual active bridge (DAB) DC–DC converter is originally revealed first. It is because the polarities of the AC side output voltages of the two H-bridge converters in DAB converter are not able to be always kept the same as that of the inductor current in the conventional modulation strategies. An improved triple-phase-shift (ITPS) control is proposed according to the analysis results to ensure that the dual-side flow back currents are eliminated, and all of the power switches achieve soft switching in the entire power range. The detailed experimental results of the ITPS control validate its validity and feasibility.

References

    1. 1)
      • 21. Bai, H., Mi, C.: ‘Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge DC–DC converters using novel dual-phase-shift control’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 29052914.
    2. 2)
      • 6. Jain, P., Pahlevaninezhad, M., Pan, S., et al: ‘A review of high frequency power distribution systems: for space, telecommunication, and computer applications’, IEEE Trans. Power Electron., 2014, 29, (8), pp. 38523863.
    3. 3)
      • 18. Wen, H.Q., Xiao, W.D., Su, B.: ‘Nonactive power loss minimization in a bidirectional isolated DC–DC converter for distributed power systems’, IEEE Trans. Ind. Electron., 2014, 61, (12), pp. 68226831.
    4. 4)
      • 22. Harrye, Y.A., Ahmed, K.H., Aboushady, A.A.: ‘Reactive power minimization of dual active bridge DC/DC converter with triple phase shift control using neural network’. 3rd Int. Conf. on Renewable Energy Research and Applications, Milwaukee, WI, USA, 19–22 October 2014, pp. 566571.
    5. 5)
      • 8. Zhao, B., Song, Q., Liu, W., et al: ‘Transient DC bias and current impact effects of high-frequency-isolated bidirectional DC–DC converter in practice’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 32033216.
    6. 6)
      • 17. Zhao, B., Song, Q., Liu, W., et al: ‘Universal high-frequency-link characterization and practical fundamental-optimal strategy for dual-active-bridge DC–DC converter under PWM plus phase-shift control’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 64886494.
    7. 7)
      • 11. Oggier, G.G., Garci, G.O., Oliva, A.R.: ‘Modulation strategy to operate the dual active bridge dc–dc converter under soft switching in the whole operating range’, IEEE Trans. Power Electron., 2011, 26, (4), pp. 12281236.
    8. 8)
      • 15. Huang, J., Wang, Y., Li, Z., et al: ‘Unified triple-phase-shift control to minimize current stress and achieve full soft switching of isolated bidirectional DC-DC converter’, IEEE Trans. Ind. Electron., 2016, 63, (7), pp. 41694179.
    9. 9)
      • 16. Wu, K., Silva, C.W., Dunford, W.G.: ‘Stability analysis of isolated bidirectional dual active full-bridge DC–DC converter with triple phase-shift control’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 20072017.
    10. 10)
      • 5. Xue, L., Shen, Z., Boroyevich, D., et al: ‘Dual active bridge-based battery charger for plug-in hybrid electric vehicle with charging current containing low frequency ripple’, IEEE Trans. Power Electron., 2015, 30, (12), pp. 72997307.
    11. 11)
      • 1. Karthikeyan, V., Gupta, R.: ‘Light-load efficiency improvement by extending ZVS range in DAB-bidirectional DC–DC converter for energy storage applications’, Energy, 2017, 130, (1), pp. 1521.
    12. 12)
      • 10. Mi, C., Bai, H., Wang, C., et al: ‘Operation, design and control of dual H-bridge-based isolated bidirectional dc–dc converter’, IET Power Electron., 2008, 1, (4), pp. 507517.
    13. 13)
      • 9. Jain, A.K., Ayyanar, R.: ‘PWM control of dual active bridge: comprehensive analysis and experimental verification’, IEEE Trans. Power Electron., 2011, 26, (4), pp. 12151227.
    14. 14)
      • 3. Naayagi, R.T., Forsyth, A.J., Shuttleworth, R.: ‘Bidirectional control of a dual active bridge DC–DC converter for aerospace applications’, IET Power Electron., 2012, 5, (7), pp. 11041118.
    15. 15)
      • 4. Zhang, Z., Ouyang, Z., Thomesen, O. C., et al: ‘Analysis and design of a bidirectional isolated dc–dc converter for fuel cells and supercapacitors hybrid system’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 848859.
    16. 16)
      • 20. Chu, Y., Wang, S.: ‘Bi-directional isolated DC-DC converters with reactive power loss reduction for electric vehicle and grid support applications’. IEEE Transportation Electrification Conf. and Expo (ITEC), Dearborn, MI, USA, 18–20 June 2012, pp. 16.
    17. 17)
      • 13. Li, X.D., Li, Y.F.: ‘An optimized phase-shift modulation for fast transient response in a dual-active-bridge converter’, IEEE Trans. Power Electron., 2014, 29, (6), pp. 26612665.
    18. 18)
      • 19. Karthikeyan, V., Gupta, R.: ‘Zero circulating current modulation for isolated bidirectional dual-active-bridge DC–DC converter’, IET Power Electron., 2016, 9, (7), pp. 15531561.
    19. 19)
      • 7. Tan, N.M.L., Inoue, S., Kobayashi, A., et al: ‘Voltage balancing of a 320-V, 12-F electric double-layer capacitor bank combined with a 10-kW bidirectional isolated DC–DC converter’, IEEE Trans. Power Electron., 2008, 23, (6), pp. 27552765.
    20. 20)
      • 2. Engel, S.P., Stieneker, M., Soltau, N., et al: ‘Comparison of the modular multilevel DC converter and the dual-active bridge converter for power conversion in HVDC and MVDC grids’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 124137.
    21. 21)
      • 14. Zhao, B., Song, Q., Liu, W.: ‘Power characterization of isolated bidirectional dual-active-bridge DC–DC converter with dual-phase-shift control’, IEEE Trans. Power Electron., 2012, 27, (9), pp. 41724176.
    22. 22)
      • 12. Zhao, B., Song, Q., Liu, W.H., et al: ‘Current-stress-optimized switching strategy of isolated bidirectional DC–DC converter with dual-phase-shift control’, IEEE Trans. Ind. Electron., 2013, 60, (10), pp. 44584467.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0562
Loading

Related content

content/journals/10.1049/iet-pel.2019.0562
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address