Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Two-phase high efficiency interleaved buck converter with improved step-down conversion ratio and low voltage stress

A two-phase interleaved buck converter (IBC) providing a high step-down conversion ratio is proposed in this study. The proposed IBC uses a switch-capacitor cell to achieve a high step-down conversion ratio compared to the conventional IBC. The cell consists of two parallel switches and two crossly placed identical capacitors. These identical capacitors are charged in series and discharged in parallel by producing a lower output voltage compared to the conventional IBC at the same duty ratio. The proposed converter provides less voltage and current stresses. The operation principle, the ripple and the average current through the inductors are described in continuous conduction mode. The boundary load condition is also determined. By describing the charging and discharging of the two identical capacitors of the cell, the capacitance value is determined. The losses and efficiency are analysed, and 96.33% efficiency is achieved. Finally, the proposed converter is implemented and experimental results are provided.

References

    1. 1)
      • 4. Lin, R.-L., Hsu, C.-C., Changchien, S.-K.: ‘Interleaved four-phase buck-based current source with isolated energy-recovery scheme for electrical discharge machining’, IEEE Trans. Power Electron., 2009, 24, (7), pp. 17881797.
    2. 2)
      • 3. Zhou, S., Rincon-Mora, G.A.: ‘A high efficiency, soft switching dc-dc converter with adaptive current-ripple control for portable applications’, IEEE Trans Circuits Syst. II: Exp. Briefs, 2006, 53, (4), pp. 319323.
    3. 3)
      • 17. Schittler, A.C., Pappis, D., Campos, A., et al: ‘Interleaved buck converter applied to high-power hid lamps supply: design, modeling and control’, IEEE Trans. Ind. Appl., 2013, 49, (4), pp. 18441853.
    4. 4)
      • 18. Lee, I.-O., Cho, S.-Y., Moon, G.-W.: ‘Interleaved buck converter having low switching losses and improved step-down conversion ratio’, IEEE Trans. Power Electron., 2012, 27, (8), pp. 36643675.
    5. 5)
      • 16. Lin, B.-R., Huang, C.-L., Shih, K.-L.: ‘Implementation of a zvs interleaved converter with two transformers’, IET Power Electron., 2009, 2, (5), pp. 614623.
    6. 6)
      • 5. García, O., Zumel, P., De Castro, A., et al: ‘Automotive dc-dc bidirectional converter made with many interleaved buck stages’, IEEE Trans. Power Electron., 2006, 21, (3), pp. 578586.
    7. 7)
      • 10. Lin, C.-Y., Liu, Y.-C., Chiu, H.-J., et al: ‘Study on an interleaved buck power factor corrector with gallium nitride field effect transistor and integrated inductor’, IET Power Electron., 2014, 7, (10), pp. 25062516.
    8. 8)
      • 6. Du, X., Zhou, L., Tai, H.-M.: ‘Double-frequency buck converter’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 16901698.
    9. 9)
      • 13. Marvi, F., Adib, E., Farzanehfard, H.: ‘Zero voltage switching interleaved coupled inductor synchronous buck converter operating at boundary condition’, IET Power Electron., 2016, 9, (1), pp. 126131.
    10. 10)
      • 12. Do, D.-T., Cha, H., Nguyen, B. L.-H., et al: ‘Two-channel interleaved buck led driver using current-balancing capacitor’, IEEE J. Emerg. Sel. Top. Power Electron., 2018, 6, (3), pp. 13061313.
    11. 11)
      • 21. Kazimierczuk, M.K.: ‘Pulse-width modulated DC-DC power converters’ (John Wiley & Sons, USA, 2015).
    12. 12)
      • 8. Tsai, C.-T., Shen, C.-L.: ‘Interleaved soft-switching coupled-buck converter with active-clamp circuits’. Proc. IEEE Int. Conf. Power Electronics and Drive Systems, (PEDS 2009), Taipei, Taiwan, 2009, pp. 11131118.
    13. 13)
      • 15. Esteki, M., Poorali, B., Adib, E., et al: ‘High step-down interleaved buck converter with low voltage stress’, IET Power Electron., 2015, 8, (12), pp. 23522360.
    14. 14)
      • 2. Sun, K., Zhang, L., Xing, Y., et al: ‘A distributed control strategy based on dc bus signaling for modular photovoltaic generation systems with battery energy storage’, IEEE Trans. Power Electron., 2011, 26, (10), pp. 30323045.
    15. 15)
      • 11. Ilic, M., Maksimovic, D.: ‘Interleaved zero-current-transition buck converter’, IEEE Trans. Ind. Appl., 2007, 43, (6), pp. 16191627.
    16. 16)
      • 20. Ioinovici, A.: ‘Power electronics and energy conversion systems: fundamentals and hard-switching converters’, vol. 1, (John Wiley and Sons, USA, 2013).
    17. 17)
      • 7. Chen, Y.-M., Tseng, S.-Y., Tsai, C.-T., et al: ‘Interleaved buck converters with a single-capacitor turn-off snubber’, IEEE Trans. Aerosp. Electron. Syst., 2004, 40, (3), pp. 954967.
    18. 18)
      • 19. Tseng, K.-C., Huang, C.-C.: ‘High step-up high-efficiency interleaved converter with voltage multiplier module for renewable energy system’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 13111319.
    19. 19)
      • 9. Yao, K., Qiu, Y., Xu, M., et al: ‘A novel winding-coupled buck converter for high-frequency, high-step-down dc-dc conversion’, IEEE Trans. Power Electron., 2005, 20, (5), pp. 10171024.
    20. 20)
      • 1. Lu, D.D.-C., Agelidis, V.G.: ‘Photovoltaic-battery-powered dc bus system for common portable electronic devices’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 849855.
    21. 21)
      • 14. Adivi, M.G., Yazdani, M.R.: ‘A forward-integrated buck dc-dc converter with low voltage stress for high step-down applications’, J. Power Electron., 2018, 18, (2), pp. 356363.
    22. 22)
      • 22. Amiri, M., Farzanehfard, H.: ‘An interleaved non-isolated ZVS ultra-high step down DC-DC converter with low voltage stress’, IEEE Trans. Ind. Electron., 2018, 66, (10), pp. 76637671.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0547
Loading

Related content

content/journals/10.1049/iet-pel.2019.0547
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address