access icon free Bidirectional multi-port dc–dc converter with low voltage stress on switches and diodes

In this study, a new transformer-less multi-port dc–dc converter with bidirectional capability is proposed. The proposed converter has dual inputs and dual outputs in which one of the inputs is considered energy storage (ES) such as a battery. Owing to the bidirectional capability, charging and discharging of the ES are provided. In the charging mode, the energy of the regenerative braking can charge the battery. These features make the proposed converter suitable for hybrid energy systems. Continuous charging and discharging current of the battery, low normalised peak voltage stress (NPVS) on semiconductors, and step-up capability are other advantages of the proposed converter. Reduced NPVS causes the semiconductors with low turn-on resistance and reduced rating voltage to be utilised. The performance analysis of the proposed converter in charging and discharging modes is described. Finally, the performance of the converter and mathematical analysis are validated by experimental results.

Inspec keywords: switching convertors; DC-DC power convertors; mathematical analysis; regenerative braking; energy storage; secondary cells

Other keywords: diodes; bidirectional multiport dc–dc converter; low normalised peak voltage stress; charging discharging modes; dual outputs; charging mode; low turn-on resistance; dual inputs; energy storage; low voltage stress; continuous charging; converter suitable; battery; switches; hybrid energy systems; rating voltage

Subjects: Secondary cells; Power convertors and power supplies to apparatus; Secondary cells; DC-DC power convertors; Power electronics, supply and supervisory circuits; Control of electric power systems

References

    1. 1)
      • 14. Babaei, E., Abbasi, O.: ‘Structure for multi-input multi-output dc–dc boost converter’, IET Power Electron., 2016, 9, (1), pp. 919.
    2. 2)
      • 19. KhademiAstaneh, P., Javidan, J., Valipour, K., et al: ‘A bidirectional high step-up multi-input DC–DC converter with soft switching’, Int. Trans. Electr. Energy Syst., 2019, 29, (1), p. e2699.
    3. 3)
      • 8. Khaligh, A., Cao, J., Lee, Y.J.: ‘A multiple-input DC–DC converter topology’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 862868.
    4. 4)
      • 9. Hintz, A., Prasanna, U.R., Rajashekara, K.: ‘Novel modular multiple-input bidirectional DC–DC power converter (MIPC) for HEV/FCV application’, IEEE Trans. Ind. Electron., 2015, 62, (5), pp. 31633172.
    5. 5)
      • 17. Danyali, S., Hosseini, S.H., Gharehpetian, G.B.: ‘New extendable single-stage multi-input DC–DC/AC boost converter’, IEEE Trans. Power Electron., 2014, 29, (2), pp. 775788.
    6. 6)
      • 16. Wai, R.J., Chen, B.H.: ‘High-efficiency dual-input interleaved DC–DC converter for reversible power sources’, IEEE Trans. Power Electron., 2014, 29, (6), pp. 29032921.
    7. 7)
      • 10. Nahavandi, A., Tarafdar Hagh, M., Bannae Sharifian, M.B., et al: ‘A nonisolated multiinput multioutput DC–DC boost converter for electric vehicle applications’, IEEE Trans. Power Electron., 2015, 30, (4), pp. 18181835.
    8. 8)
      • 1. Jalilzadeh, T., Babaei, E., Maalandish, M.: ‘Generalized nonisolated high step-up DC–DC converter with reduced voltage stress on devices’, Int. J. Circuit Theory Appl., 2018, 46, (11), pp. 20532078.
    9. 9)
      • 7. Behjati, H., Davoudi, A.: ‘Single-stage multi-port DC–DC converter topology’, IET Power Electron., 2013, 6, (2), pp. 392403.
    10. 10)
      • 5. Khadem Haghighian, S., Tohidi, S., Feyzi, M.R., et al: ‘Design and analysis of a novel SEPIC-based multi-input DC/DC converter’, IET Power Electron., 2017, 10, (12), pp. 13931402.
    11. 11)
      • 3. Jalilzadeh, T., Rostami, N., Babaei, E., et al: ‘Ultra-step-up dc–dc converter with low-voltage stress on devices’, IET Power Electron., 2018, 12, (3), pp. 345357.
    12. 12)
      • 23. Solero, L., Lidozzi, A., Pomilio, J.A.: ‘Design of multiple-input power converter for hybrid vehicles’, IEEE Trans. Power Electron., 2005, 20, (5), pp. 10071016.
    13. 13)
      • 4. Varesi, K., Hosseini, S.H., Sabahi, M., et al: ‘Performance analysis and calculation of critical inductance and output voltage ripple of a simple non-isolated multi-input bidirectional DC–DC converter’, Int. J. Circuit Theory Appl., 2018, 46, (3), pp. 543564.
    14. 14)
      • 20. Cheng, T., Lu, D.D.C., Qin, L.: ‘Non-isolated single-inductor DC/DC converter with fully reconfigurable structure for renewable energy applications’, IEEE Trans. Circuits Syst. II, Express Briefs, 2017, 65, (3), pp. 351355.
    15. 15)
      • 11. Nejabatkhah, F., Danyali, S., Hosseini, S.H., et al: ‘Modeling and control of a new three-input DC–DC boost converter for hybrid PV/FC/battery power system’, IEEE Trans. Power Electron., 2012, 27, (5), pp. 23092324.
    16. 16)
      • 6. Kumar, L., Jain, S.: ‘A multiple source DC/DC converter topology’, Int. J. Electr. Power Energy Syst., 2013, 51, pp. 278291.
    17. 17)
      • 24. Ogata, K., Yang, Y.: ‘Modern control engineering’, vol. 4 (Prentice-Hall, USA, 2002).
    18. 18)
      • 13. Reza Ahrabi, R., Ardi, H., Elmi, M., et al: ‘A novel step-up multi-input dc–dc converter for hybrid electric vehicles application’, IEEE Trans. Power Electron., 2017, 32, (5), pp. 35493561.
    19. 19)
      • 22. Chen, Y.M., Huang, A.Q., Yu, X.: ‘A high step-up three-port DC–DC converter for stand-alone PV/battery power systems’, IEEE Trans. Power Electron., 2013, 28, (11), pp. 50495062.
    20. 20)
      • 2. Varesi, K., Hosseini, S.H., Sabahi, M., et al: ‘Performance and design analysis of an improved non-isolated multiple input buck DC–DC converter’, IET Power Electron., 2017, 10, (9), pp. 10341045.
    21. 21)
      • 21. Faraji, R., Adib, E., Farzanehfard, H.: ‘Soft-switched non-isolated high step-up multi-port DC–DC converter for hybrid energy system with minimum number of switches’, Int. J. Electr. Power Energy Syst., 2019, 106, pp. 511519.
    22. 22)
      • 12. Akar, F., Tavlasoglu, Y., Ugur, E., et al: ‘A bidirectional nonisolated multi-input DC–DC converter for hybrid energy storage systems in electric vehicles’, IEEE Trans. Veh. Technol., 2016, 65, 10, pp. 79447955.
    23. 23)
      • 18. Zhou, Z, Wu, H., Ma, X., et al: ‘A non-isolated three-port converter for stand-alone renewable power system’. IECON 2012–38th Annual Conf. on IEEE Industrial Electronics Society, Montreal, QC, Canada, 2012, pp. 33523357.
    24. 24)
      • 15. Kardan, F., Alizadeh, R., Banaei, M.R.: ‘A new three input dc/dc converter for hybrid PV/FC/battery applications’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (4), pp. 17711778.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0525
Loading

Related content

content/journals/10.1049/iet-pel.2019.0525
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading