access icon free Inrush current reduction technology of DAB converter for low-voltage battery systems and DC bus connections in DC microgrids

Low-voltage battery energy storage system and dual active bridge (DAB) converter control method for DC bus connection in DC microgrid. To use power efficiently in a DC microgrid, power must be easily transferred in both directions. DAB converters can easily transfer power in both directions using only the phase shift of the gate at 50% fixed duty on the primary and secondary sides. In the transient state, however, an overcurrent occurs to charge the output capacitor. A soft start algorithm is used to overcome this overcurrent problem. In the conventional method, the control complexity and response characteristics are slow because the duty control is included and the algorithm is performed in several stages. In this study, a gate drive circuit is constructed using a pulse transformer for 50% fixed duty control and short circuit protection. A soft start control algorithm is proposed, including a first-order phase shift scheme for the stable soft start at 50% fixed duty. The 3 kW prototype DAB converter is designed and implemented for bidirectional power conversion testing. The experimental results show that stable power transfer is achieved in the initial transient state through bidirectional output control and soft start.

Inspec keywords: switching convertors; DC-DC power convertors; power convertors; overcurrent protection; power generation control; power transformers; distributed power generation

Other keywords: current reduction technology; first-order phase shift scheme; stable soft start; dual active bridge converter control method; soft start control algorithm; DC bus connection; stable power transfer; gate drive circuit; DC microgrid; 50% fixed duty control; power 3.0 kW; 3 kW prototype DAB converter; low-voltage battery systems; control complexity; bidirectional output control; bidirectional power conversion testing; soft start algorithm; low-voltage battery energy storage system

Subjects: Control of electric power systems; DC-DC power convertors; Distributed power generation; Transformers and reactors; Power convertors and power supplies to apparatus

References

    1. 1)
      • 19. Kheraluwala, M.N., Gascoigne, R.W., Divan, D.M., et al: ‘Performance characterization of a high-power dual active bridge DC-to-DC converter’, IEEE Trans. Ind. Appl., 1992, 28, (6), pp. 12941301.
    2. 2)
      • 5. Lotfi, H., Khodaei, A.: ‘AC versus DC microgrid planning’, IEEE Trans. Smart Grid, 2017, 8, (1), pp. 296304.
    3. 3)
      • 14. Chen, W., Rong, P., Lu, Z.: ‘Snubberless bidirectional DC–DC converter with new CLLC resonant tank featuring minimized switching loss’, IEEE Trans. Ind. Electron, 2010, 57, (9), pp. 30753086.
    4. 4)
      • 16. Zhao, B., Yu, Q., Sun, W.: ‘Extended-phase-shift control of isolated bidirectional DC–DC converter for power distribution in microgrid’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 46674680.
    5. 5)
      • 21. Wang, H., Yan, K., Ling, Z., et al: ‘Switching strategy for isolated dual-active-bridge converter’, IET Power Electron, 2017, 10, (1), pp. 2937.
    6. 6)
      • 2. Chiradeja, P., Ramakumar, R.: ‘An approach to quantify the technical benefits of distributed generation’, IEEE Trans. Energy Convers., 2004, 19, (4), pp. 764773.
    7. 7)
      • 7. Han, T., Lee, J., Kim, H., et al: ‘Optimized design and coordinated control for stand-alone DC micro-grid’, The Trans. Korean Inst. Power Electron., 2013, 18, (1), pp. 6371.
    8. 8)
      • 24. Alonso, A., Sebastian, J., Lamar, D., et al: ‘An overall study of a dual active bridge for bidirectional dc/dc conversion’. Energy Conversion Congress and Exposition (ECCE-Georgia 2010), Atlanta, GA, USA, 2010, pp. 11291135.
    9. 9)
      • 29. Giuliani, F., Delmonte, N., Cova, P., et al: ‘Soft-starting procedure for dual active bridge converter’. Proc. 2015 IEEE 16th Workshop on Control and Modeling for Power Electronics (COMPEL), Vancouver, Canada, 2015, pp. 16.
    10. 10)
      • 10. Kakigano, H., Miura, Y., Ise, T., et al: ‘DC micro-grid for super high quality distribution – system configuration and control of distributed generations and energy storage devices’. Proc. IEEE Power Electronics Specialists Conf., Jeju, Republic of Korea, June 2006, pp. 17.
    11. 11)
      • 26. Naayagi, R.T., Forsyth, A.J., Shuttleworth, R.: ‘High-power bidirectional DC–DC converter for aerospace applications’, IEEE Trans. Power Electron., 2012, 27, (11), pp. 43664379.
    12. 12)
      • 13. Kim, H.S., Ryu, M.H., Baek, J.W., et al: ‘High-efficiency isolated bidirectional AC–DC converter for a DC distribution system’, IEEE Trans. Power Electron., 2013, 28, (4), pp. 16421654.
    13. 13)
      • 22. Sathishkumar, P., Krishna, T.N.V., Himanshu, , et al: ‘Digital soft start implementation for minimizing start up transients in high power DAB-IBDC converter’, Energies, 2018, 11, (4), pp. 12651273.
    14. 14)
      • 17. Huang, J., Wang, Y., Li, Z., et al: ‘Multifrequency approximation and average modelling of an isolated bidirectional dc–dc converter for dc microgrids’, IET Power Electron., 2016, 9, (6), pp. 22992306.
    15. 15)
      • 4. Akagi, H., Kitada, R.: ‘Control and design of a modular multilevel cascade BTB system using bidirectional isolated DC/DC converters’, IEEE Trans. Power Electron., 2011, 26, pp. 24572464.
    16. 16)
      • 27. Qin, H., Kimball, J.W.: ‘Generalized average modeling of dual active bridge DC–DC converter’, IEEE Trans. Power Electron., 2012, 27, (4), pp. 20782084.
    17. 17)
      • 8. Hill, C.A., Such, M.C., Chen, D., et al: ‘Battery energy storage for enabling integration of distributed solar power generation’, IEEE Trans. Smart Grid, 2012, 3, (2), pp. 850857.
    18. 18)
      • 6. Kakigano, H., Miura, Y., Ise, T.: ‘Low-voltage bipolar-type DC microgrid for super high quality distribution’, IEEE Trans. Power Electron., 2010, 25, (1), pp. 30663075.
    19. 19)
      • 20. Jain, A.K., Ayyanar, R.: ‘PWM control of dual active bridge: comprehensive analysis and experimental verification’, IEEE Trans. Power Electron., 2011, 26, (4), pp. 12151227.
    20. 20)
      • 28. Clotea, L.R., Scortaru, P., Nistor, C.-G.: ‘A novel start-up method for full-bridge isolated DC–DC converter in RES applications’. 2017 OPTIM & 2017 ACEMP, Brasov, Romania, 2017, pp. 555560.
    21. 21)
      • 25. Li, X., Bhat, A.K.S.: ‘Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC converter’, IEEE Trans. Power Electron., 2010, 25, (4), pp. 850862.
    22. 22)
      • 3. Zhang, R., Wang, D., Mao, C., et al: ‘Dual active bridge synchronous chopper control strategy in electronic power transformer’, IET Electr. Power Appl., 2014, 8, (3), pp. 8997.
    23. 23)
      • 12. Corradini, L., Seltzer, D., Bloomquist, D., et al: ‘Zero voltage switching technique for bidirectional dc/dc converters’, IEEE Trans. Power Electron., 2014, 29, (4), pp. 15851594.
    24. 24)
      • 15. Kolar, J.K., Tenti, P.: ‘Modeling and optimization of bidirectional dual active bridge DC–DC converter topologies’. Dissertation, Eidgenössische Technische Hochschule ETH Zürich, 2010, Nr. 19177.
    25. 25)
      • 18. Inoue, S., Akagi, H.: ‘A bidirectional dc–dc converter for an energy storage system with galvanic isolation’, IEEE Trans. Power Electron., 2007, 22, (6), pp. 22992306.
    26. 26)
      • 9. Wang, B., Sechilariu, M., Locment, F.: ‘Intelligent DC microgrid with smart grid communications: control strategy consideration and design’, IEEE Trans. Smart Grid, 2012, 3, (4), pp. 21482156.
    27. 27)
      • 1. Chiradeja, P.: ‘Benefit of distributed generation: a line loss reduction analysis’. IEEE Transmission and Distribution Conf. and Exhibition: Asia and Pacific, Dalian, People's Republic of China, August 2005, pp. 15.
    28. 28)
      • 11. Wai, R.J., Lin, C.Y., Chang, Y.R.: ‘High step-up bidirectional isolated converter with two input power sources’, IEEE Trans. Ind. Electron., 2009, 56, (7), pp. 26292643.
    29. 29)
      • 23. Choi, H.J., Jung, J.H.: ‘Practical design of dual active bridge converter as isolated bi-directional power interface for solid state transformer applications’, J. Electr. Eng. Technol., 2016, 11, (5), pp. 12651273.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0506
Loading

Related content

content/journals/10.1049/iet-pel.2019.0506
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading