Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

GaN-based split phase transformer-less PV inverter with auxiliary ZVT circuit

GaN-based split phase transformer-less PV inverter with auxiliary ZVT circuit

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This paper explores performance enhancement of the common ground dynamic dc-link (CGDL) inverter for single phase photovoltaic (PV) applications by a combination of gallium nitride (GaN) devices, split phase topology, coupled inductors, and zero voltage transition (ZVT) scheme. The CGDL inverter has the inherent advantage of minimised dc-link capacitance and negligible leakage current due to the common ground configuration, but its reported efficiency was usually lower because of the higher dc-link voltage used for the reduction of decoupling capacitance to a great extent. To solve the efficiency problem, in this study, a soft switching circuit is proposed for the first stage, while a coupled inductor integrated magnetics is incorporated in the second stage to reduce inductor loss, volume, and cost. Both of these topological improvements combined with the use of GaN devices facilitate in achieving high efficiency without compromising converter power density. Extensive experimental results are provided from a GaN based 1 kVA hardware prototype to demonstrate the superior performance of the CGDL inverter attaining a peak efficiency of 98.7% and a California Energy Commission efficiency of 98.5% at 75/50 kHz switching frequency.

http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0498
Loading

Related content

content/journals/10.1049/iet-pel.2019.0498
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address