Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Adaptive maintain power signature scheme for power over ethernet system

Power over Ethernet (PoE) technology has been widely used in networking market for its space-saving, flexibility and low cost. As the PoE system needs to meet maintain power signature (MPS) requirements specified by the IEEE standard, it is important for powered device (PD) to draw a predetermined minimum current. If the PD current goes below the minimum current, the power sourcing equipment (PSE) assumes the PD has been disconnected and terminates operating voltage. If a fixed current is added to exceed the minimum current, a phenomenon of power wasting will be caused during standby or ultra-low power mode. This study proposes an adaptive MPS scheme to achieve power-saving and meet the MPS requirements. It consists of current comparator and MPS circuit to extract the periodic pulsed current for MPS requirements. The proposed scheme has been fabricated in 0.18 μm 100 V Bipolar-CMOS-DMOS process adding no extra pin and an area is 1.45 × 2.23 mm2. Test results show that the proposed interface sources a periodic pulsed current with a period of 318 ms and 25% duty cycle to tackle the issue of MPS absence in very low power condition.

References

    1. 1)
      • 13. Sun, M., Yang, Z., Joshi, K., et al: ‘A 6 A, 93% peak efficiency, 4-phase digitally synchronized hysteretic buck converter with ±1.5% frequency and ±3.6% current-sharing error’, IEEE J. Solid-State Circuits, 2017, 52, (11), pp. 30813094.
    2. 2)
      • 22. Akram, M.A., Hong, W., Hwang, I.-C.: ‘Fast transient fully standard-cell-based all digital low-dropout regulator with 99.97% current efficiency’, IEEE Trans. Power Electron., 2018, 33, (9), pp. 80118019.
    3. 3)
      • 10. Park, Y.-J., Park, J.-H., Kim, H.-J, et al: ‘A design of a 92.4% efficiency triple mode control DC-DC buck converter with low power retention mode and adaptive zero current detector for IoT/wearable applications’, IEEE Trans. Power Electron., 2017, 32, (9), pp. 69466960.
    4. 4)
      • 5. ‘IEEE P802.3bt standard draft’. Available at http://www.ieee802.org/3/at/, accessed 2018.
    5. 5)
      • 15. Tachibana, F., Hirabayashi, O., Takeyama, Y., et al: ‘A 27% active and 85% standby power reduction in dual-power-supply SRAM using’, IEEE J. Solid-State Circuits, 2014, 49, (1), pp. 118126.
    6. 6)
      • 2. Li, Y., Zhu, Z.: ‘A 30-W 90% efficiency dual-mode controlled DC-DC controller with power over ethernet interface for power device’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2017, 25, (6), pp. 19431953.
    7. 7)
      • 20. Yoon, Y.-S., Kim, H.-S., Qu, W., et al: ‘Fully integrated digitally assisted low-dropout regulator for a NAND flash memory system’, IEEE Trans. Power Electron., 2018, 33, (1), pp. 388406.
    8. 8)
      • 16. Basso, C.: ‘Designing control loops for linear and switching power supplies: a tutorial guide’ (Artech House Press, USA, 2012).
    9. 9)
      • 12. Du, H., Huo, Z.: ‘PSM control technique for primary-side regulating fly-back converters’, IET Power Electron., 2018, 11, (3), pp. 531538.
    10. 10)
      • 11. Kapat, S., Mandu, B.C., Patra, A.: ‘Voltage-mode digital pulse skipping control of a DC-DC converter with stable periodic behavior and improved light-load efficiency’, IEEE Trans. Power Electron., 2016, 31, (4), pp. 33723379.
    11. 11)
      • 1. Wu, J., Wu, H., Li, C., et al: ‘Advanced four-pair architecture with input current balance function for power over ethernet (PoE) system’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 23432355.
    12. 12)
      • 14. Lee, D.-H.: ‘Simple MOSFET gating delay scheme for SMPS start-up in the standby power reduction circuit’, IET Power Electron., 2018, 11, (1), pp. 1622.
    13. 13)
      • 21. Luria, K., Shor, J., Zelikson, M., et al: ‘Dual-mode low-drop-out regulator/power gate with linear and on–off conduction for microprocessor core on-die supply voltages in 14 nm’, IEEE J. Solid-State Circuits, 2016, 51, (3), pp. 752762.
    14. 14)
      • 17. Xu, S., Zhang, X., Wang, C., et al: ‘High precision constant voltage digital control scheme for primary-side controlled flyback converter’, IET Power Electron., 2016, 9, (13), pp. 25222533.
    15. 15)
      • 8. Wi, S.-M., Kim, M.: ‘Precise control strategy of dual-mode flyback DC/DC converter’, IET Power Electron., 2019, 12, (2), pp. 220227.
    16. 16)
      • 6. Na, K., Ma, H., Namgoong, G., et al: ‘Step-charging technique for CC/CV mode battery charging with low-cost control components in IPT systems’, IET Power Electron., 2018, 11, (15), pp. 25232530.
    17. 17)
      • 18. Wu, C.-N., Chen, Y.-M.: ‘Inductor current measurement strategy for high-precision output current control’, IEEE J. Emerg. Sel. Top. Power Electron., 2017, 5, (3), pp. 12631271.
    18. 18)
      • 9. Chen, N., Wei, T., Shang, K., et al: ‘Digital controller based on delta operator for high-frequency DC/DC switching converters’, IET Power Electron., 2018, 11, (7), pp. 12241230.
    19. 19)
      • 19. Duong, Q.-H., Nguyen, H.-H., Kong, J.-W.: ‘Multiple-loop design technique for high-performance low-dropout regulator’, IEEE J. Solid-State Circuits, 2017, 52, (10), pp. 25332549.
    20. 20)
      • 3. Xiao, Z.: ‘An efficient power over ethernet (PoE) interface with current-balancing and hot-swapping control’, IEEE Trans. Ind. Electron., 2018, 65, (3), pp. 24962506.
    21. 21)
      • 7. Gerami, E., Delshad, M., Amini, M., et al: ‘A new family of non-isolated PWM DC-DC converter with soft switching’, IET Power Electron., 2019, 12, (2), pp. 237244.
    22. 22)
      • 4. ‘IEEE 802.3at standard’. Available at http://www.ieee802.org/3/at/, accessed 2009.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0491
Loading

Related content

content/journals/10.1049/iet-pel.2019.0491
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address