access icon free Static voltage balance method of CDSM-MMC based on power supply control

Recently, the clamp double sub-module (CDSM) topology with its DC fault clearance ability has become more attractive for use in the modular multilevel converter (MMC)-based high-voltage DC transmission systems. However, the capacitor voltage imbalance caused by the discreteness of the device parameters during the uncontrolled pre-charging process seriously affects the system's safe start-up. To solve this problem, this study provides a novel CDSM-MMC capacitor static voltage balance method. Since the power supplies obtaining energy from the CDSM capacitors greatly influence the static voltage balance, the power supply input current is chosen as the control variable. On the basis of the control signals generated by the voltage balance algorithm, the control of the CDSM power supply input currents makes the arm energy be an average distribution in the CDSM capacitors. This method can replace the capacitor equalising resistors of CDSM to achieve capacitor voltage balance and can reduce the CDSM-MMC's losses. The method requires no additional circuits, and the control strategy is simple. Moreover, the method can apply to the static voltage balance control of other SM topologies with two capacitors. An arm cascaded with two CDSMs is tested and the results show the effectiveness of the proposed method.

Inspec keywords: voltage control; capacitors; power convertors; fault diagnosis; HVDC power transmission; HVDC power convertors; power transmission control; resistors

Other keywords: power supply input current; system; power supplies; novel CDSM-MMC capacitor static voltage balance method; capacitor voltage balance; control strategy; clamp double sub-modular; uncontrolled pre-charging process; static voltage balance control; modular multilevel converter-based high-voltage DC transmission systems; CDSM-MMC's losses; DC fault clearance ability; power supply control; CDSM power supply input currents; capacitor voltage imbalance; voltage balance algorithm; CDSM capacitors; control signals

Subjects: Voltage control; Power convertors and power supplies to apparatus; d.c. transmission; Power system control; Resistors; Control of electric power systems; Capacitors

References

    1. 1)
      • 3. Luo, L.F., Zhang, Y.B., Jia, L.X., et al: ‘Capacitor voltage balancing method for modified modular multilevel converter’, IEEJ Trans. Electr. Electron. Eng., 2018, 13, (8), pp. 111.
    2. 2)
      • 5. Marquardt, R.: ‘Modular multilevel converter: an universal concept for HVDC-networks and extended DC-bus-applications’. Proc. Int. Power Electronics Conf., Sapporo, Japan, June 2010, pp. 502507.
    3. 3)
      • 11. Siemaszko, D.: ‘Fast sorting method for balancing capacitor voltages in modular multilevel converters’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 463470.
    4. 4)
      • 23. Zhang, L., Qin, J.C., Wu, X.J., et al: ‘A generalized precharging strategy for soft startup process of the modular multilevel converter-based HVDC systems’, IEEE Trans. Ind. Appl., 2017, 53, (6), pp. 56455657.
    5. 5)
      • 2. Debnath, S., Qin, J.C., Bahrani, B., et al: ‘Operation, control, and applications of the modular multilevel converter: a review’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 3753.
    6. 6)
      • 13. Mora, A., Urrutia, M., Cárdenas, R., et al: ‘Model-predictive-control-based capacitor voltage balancing strategies for modular multilevel converters’, IEEE Trans. Ind. Electron., 2019, 66, (3), pp. 24322443.
    7. 7)
      • 1. Flourentzou, N., Agelidis, V.G., Demetriades, G.D.: ‘VSC-based HVDC power transmission systems: an overview’, IEEE Trans. Power Electron., 2009, 24, (3), pp. 592602.
    8. 8)
      • 7. Xue, Y.L., Xu, Z.: ‘On the bipolar MMC-HVDC topology suitable for bulk power overhead line transmission: configuration, control, DC fault analysis’, IEEE Trans. Power Deliv., 2014, 29, (6), pp. 24202429.
    9. 9)
      • 12. Peng, H., Xie, R., Wang, K., et al: ‘A capacitor voltage balancing method with fundamental sorting frequency for modular multilevel converters under staircase modulation’, IEEE Trans. Power Electron., 2016, 31, (11), pp. 78097822.
    10. 10)
      • 16. Hu, P.F., Teodorescu, R., Wang, S.D., et al: ‘A currentless sorting and selection-based capacitor-voltage-balancing method for modular multilevel converters’, IEEE Trans. Power Electron., 2019, 34, (2), pp. 10221025.
    11. 11)
      • 22. Luo, L.F., Zhang, Y.B., Jia, L.X., et al: ‘Capacitor static voltage balance based on auxiliary-power supply pulse width control for MMC’, IET Power Electron., 2018, 11, (11), pp. 17961803.
    12. 12)
      • 17. IEC 62501: ‘Voltage sourced converter (VSC) valves for high-voltage direct current (HVDC) power transmission – electrical testing’, 2009.
    13. 13)
      • 21. Jian, L., Zhao, B., Song, Q., et al: ‘Minimum voltage tracking balance control based on switched resistor for modular cascaded converter in MVDC distribution grid’, IEEE Trans. Ind. Electron., 2016, 63, (9), pp. 54375441.
    14. 14)
      • 26. Luo, L.F., Cao, H., Yan, D.P., et al: ‘Based on curve fitting method to analyze and calculate the equalizing resistance of sub-modules in series of MMC system’. Proc. 2016 Chinese Control Decision Conf., Yinchuan, China, May 2016, pp. 36773681.
    15. 15)
      • 14. Saad, H., Guillaud, X., Mahseredjian, J., et al: ‘MMC capacitor voltage decoupling and balancing controls’, IEEE Trans. Power Deliv., 2015, 30, (2), pp. 704712.
    16. 16)
      • 24. Shi, X.J., Liu, B., Wang, Z.Q., et al: ‘Modeling, control design, and analysis of a startup scheme for modular multilevel converters’, IEEE Trans. Ind. Electron., 2015, 62, (11), pp. 70097024.
    17. 17)
      • 15. Liu, Z., Liu, Z.X., Li, C., et al: ‘Improved voltage balancing method based on MMC nearest level modulation’. Proc. Chinese Control Conf., Dalian, China, July 2017, pp. 1035910364.
    18. 18)
      • 10. Hagiwara, M., Akagi, H.: ‘Control and experiment of pulse width modulated modular multilevel converters’, IEEE Trans. Power Electron., 2009, 24, (7), pp. 17371746.
    19. 19)
      • 20. Shu, Z.L., He, X.Q., Wang, Z.Y., et al: ‘Voltage balancing approaches for diode-clamped multilevel converters using auxiliary capacitor-based circuits’, IEEE Trans. Power Electron., 2013, 28, (5), pp. 21112124.
    20. 20)
      • 19. Gao, C.Z., Lv, J.L.: ‘A new parallel-connected diode-clamped modular multilevel converter with voltage self-balancing’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 16161625.
    21. 21)
      • 4. Luo, L.F., Zhang, Y.B., Jia, L.X., et al: ‘A novel method based on self-power supply control for balancing capacitor static voltage in MMC’, IEEE Trans. Power Electron., 2018, 33, (2), pp. 10381049.
    22. 22)
      • 6. Yu, X.Y., Wei, Y.D., Jiang, Q.R.: ‘STATCOM operation scheme of the CDSM-MMC during a pole-to-pole DC fault’, IEEE Trans. Power Deliv., 2016, 31, (3), pp. 11501159.
    23. 23)
      • 25. Li, B.B., Xu, D.G., Zhang, Y., et al: ‘Closed-loop precharge control of modular multilevel converters during start-up processes’, IEEE Trans. Power Electron., Lett., 2015, 30, (2), pp. 524531.
    24. 24)
      • 18. Song, Q., Liu, W.: ‘Control of cascade STATCOM with star configuration under unbalanced conditions’, IEEE Trans. Power Electron., 2009, 24, (1), pp. 4558.
    25. 25)
      • 8. Modeer, T., Nee, H.P., Norrga, S.: ‘Loss comparison of different sub-module implementations for modular multilevel converters in HVDC applications’. 14th Europe Power Electronic Apply Conf., Birmingham, UK, 30 August–1 September 2011, pp. 17.
    26. 26)
      • 9. Li, X.Q., Liu, W.H., Song, Q., et al: ‘Protection of non-permanent faults on DC overhead lines in MMC-based HVDC systems’, IEEE Trans. Power Deliv., 2013, 28, (1), pp. 483490.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0418
Loading

Related content

content/journals/10.1049/iet-pel.2019.0418
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading