access icon free Integrated design method for LCL-type filter and current controller to improve inverter adaptability to grid impedance

To characterise the grid-connected inverter with strong robustness against grid impedance, this study proposes an integrated design approach of LCL-type filter and controller parameters. In the approach, the inherent relation between LCL-type filter and controller in regarding to inverter robustness is revealed and utilised to realise the optimised match between LCL-type-filter parameters and controller parameters. To facilitate the analysis of stability and robustness, a parameter normalisation scheme is also proposed. With the scheme, relevant normalisation parameters can be designed succinctly according to the required stability and robustness. Additionally, the LCL-type parameter and controller parameter can be achieved immediately by restoring normalisation parameters. Based on the approach parameter constraints and design guidelines for robust grid-connected inverter design are also derived in the study to facilitate its application in practice. The proposed inverter design method can guarantee the inverter stability and robustness simultaneously without needing the complicated iterative computations, which cannot be avoided for conventional design methods. Simulation and experimental results are presented to validate the performance and demonstrate the merits of the integrated design method.

Inspec keywords: electric current control; filtering theory; invertors; power grids

Other keywords: strong robustness; parameter constraints; inverter adaptability; controller parameters; parameter normalisation scheme; design guidelines; current controller; integrated design approach; inverter stability; grid impedance; conventional design methods; inverter robustness; LCL-filter parameters; integrated design method; normalisation parameters; robust grid-connected inverter design; LCL filter; controller parameter; inverter design method

Subjects: Power convertors and power supplies to apparatus; Filtering methods in signal processing; Current control; Control of electric power systems; Signal processing theory

References

    1. 1)
      • 23. Jayalath, S., Hanif, M.: ‘Generalized LCL-type-filter design algorithm for grid-connected voltage-source inverter’, IEEE Trans. Ind. Electron., 2017, 64, (3), pp. 19051915.
    2. 2)
      • 30. Davari, M., Mohamed, Y.A.-R.I.: ‘Robust vector control of a very weak-grid-connected voltage-source converter considering the phase-locked loop dynamics’, IEEE Trans. Power Electron., 2017, 32, (2), pp. 977994.
    3. 3)
      • 4. Enslin, J.H., Heskes, P.J.: ‘Harmonic interaction between a large number of distributed power inverters and the distributed network’, IEEE Trans. Power Electron., 2004, 19, (6), pp. 15861593.
    4. 4)
      • 29. Parker, S., McGrath, B., Holmes, D.: ‘Regions of active damping control for LCL-type filters’. Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Raleigh, NC, USA, 2012, pp. 5360.
    5. 5)
      • 18. Gabe, I.J., Montagner, V.F., Pinheiro, H.: ‘Design and implementation of a robust current controller for VSI connected to the grid through an LCL-type filter’, IEEE Trans. Power Electron., 2009, 24, (6), pp. 14441452.
    6. 6)
      • 6. Zheng, C., Zhou, L., Yu, X., et al: ‘Online phase margin compensation strategy for a grid-tied inverter to improve its robustness to grid impedance variation’, IET Power Electron., 2016, 9, (4), pp. 611620.
    7. 7)
      • 21. Jalili, K., Bernet, S.: ‘Design of LCL-type filters of active-front-end two level voltage-source converters’, IEEE Trans. Ind. Electron., 2009, 56, (5), pp. 16741689.
    8. 8)
      • 14. Bao, C., Ruan, X., Wang, X., et al: ‘Step-by-step controller design for LCL-type grid-connected inverter with capacitor–current-feedback active-damping’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 12391253.
    9. 9)
      • 3. Liserre, M., Teodorescu, R., Blaabjerg, F.: ‘Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values’, IEEE Trans. Power Electron., 2006, 21, (1), pp. 263272.
    10. 10)
      • 10. Chen, X., Zhang, Y., Wang, S., et al: ‘Impedance-phased dynamic control method for grid-connected inverters in a weak grid’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 274283.
    11. 11)
      • 11. Zhou, L., Zheng, C., Liu, Y., et al: ‘Phase-reshaping strategy for enhancing grid-connected inverter robustness to gridimpedance’, IET Power Electron., 2018, 11, (8), pp. 110.
    12. 12)
      • 5. Jia, Y., Zhao, J., Fu, X.: ‘Direct grid current control of LCL-type-filtered grid-connected inverter mitigating grid voltage disturbance’, IEEE Trans. Power Electron., 2014, 29, (3), pp. 15321541.
    13. 13)
      • 8. Yao, W., Yang, Y., Zhang, X., et al: ‘Design and analysis of robust active damping for LCL-type filters using digital notch filters’, IEEE Trans. Power Electron., 2017, 32, (3), pp. 23602375.
    14. 14)
      • 27. Buso, S., Mattavelli, P.: ‘Digital control in power electronics’ (Morgan & Claypool, Seattle, WA, 2006), pp. 1764.
    15. 15)
      • 16. Saïd-Romdhane, M.B., Naouar, M.W., Slama-Belkhodja, I., et al: ‘Robust active damping methods for LCL-type filter-based grid-connected converters’, IEEE Trans. Power Electron., 2017, 32, (9), pp. 67396750.
    16. 16)
      • 26. Wu, T., Misra, M., Lin, L., et al: ‘An improved resonant frequency based systematic LCL-type filter design method for grid-connected inverter’, IEEE Trans. Ind. Electron., 2017, 64, (8), pp. 64126421.
    17. 17)
      • 19. Kahrobaeian, A., Mohamed, Y.A.-R.I.: ‘Robust single-loop direct current control of LCL-type-filtered converter-based DG units in grid-connected and autonomous microgrid modes’, IEEE Trans. Power Electron., 2014, 29, (10), pp. 56055619.
    18. 18)
      • 25. Peña-Alzola, R., Liserre, M., Blaabjerg, F., et al: ‘LCL-type-filter design for robust active damping in grid-connected converters’, IEEE Trans., Ind., Inf., 2014, 10, (4), pp. 21922203.
    19. 19)
      • 13. Wang, X., Blaabjerg, F., Liserre, M., et al: ‘An active damper for stabilizing power-electronics-based AC systems’, IEEE Trans. Power Electron., 2014, 29, (7), pp. 33183329.
    20. 20)
      • 22. Channegowda, P., John, V.: ‘Filter optimization for grid interactive voltage source inverters’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 41064114.
    21. 21)
      • 15. Pan, D., Ruan, X., Bao, C., et al: ‘Optimized controller design for LCL-type grid-connected inverter to achieve high robustness against grid-impedance variation’, IEEE Trans. Ind. Electron., 2015, 62, (3), pp. 15371547.
    22. 22)
      • 1. Carrasco, J., Franquelo, L., Bialasiewicz, J., et al: ‘Power-electronic systems for the grid integration of renewable energy sources: A survey’, IEEE Trans. Ind. Electron., 2006, 53, (4), pp. 10021016.
    23. 23)
      • 28. Sun, J.: ‘Impedance-based stability criterion for grid-connected inverters’, IEEE Trans. Power Electron., 2011, 26, (11), pp. 30753078.
    24. 24)
      • 24. Kouchaki, A., Nymand, M.: ‘Analytical design of passive LCL-type filter for three-phase two-level power factor correction rectifiers’, IEEE Trans. Power Electron., 2018, 33, (4), pp. 30123022.
    25. 25)
      • 7. Peña-Alzola, R., Liserre, M., Blaabjerg, F., et al: ‘A self-commissioning notch filter for active damping in a three-phase LCL-type-filter-based grid-tie converter’, IEEE Trans. Power Electron., 2014, 29, (12), pp. 67546761.
    26. 26)
      • 20. Liserre, M., Blaabjerg, F., Hansen, S.: ‘Design and control of an LCL-type-filter-based three-phase active rectifier’, IEEE Trans. Ind. Appl., 2005, 41, (5), pp. 12811291.
    27. 27)
      • 12. Xu, J., Xie, S., Tang, T.: ‘Improved control strategy with grid-voltage feedforward for LCL-type-filter-based inverter connected to weak grid’, IET Power Electron., 2014, 7, (10), pp. 26602671.
    28. 28)
      • 17. Freijedo, F., Rodriguez-Diaz, E., Golsorkhi, M., et al: ‘A root-locus design methodology derived from the impedance/admittance stability formulation and its application for LCL-type grid-connected converters in wind turbines’, IEEE Trans. Power Electron., 2017, 32, (10), pp. 82188228.
    29. 29)
      • 2. Blaabjerg, F., Teodorescu, R., Liserre, M., et al: ‘Overview of control and grid synchronization for distributed power generation systems’, IEEE Trans. Ind. Electron., 2006, 53, (5), pp. 13981409.
    30. 30)
      • 9. Yang, D., Ruan, X., Wang, H.: ‘Impedance shaping of the grid-connected inverter with LCL-type filter to improve its adaptability to the weak grid condition’, IEEE Trans. Power Electron., 2014, 29, (11), pp. 57955805.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0358
Loading

Related content

content/journals/10.1049/iet-pel.2019.0358
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading