Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Automated tool for 3D planar magnetic temperature modelling: application to EE and E/PLT core-based components

Automated tool for 3D planar magnetic temperature modelling: application to EE and E/PLT core-based components

For access to this article, please select a purchase option:

Buy article PDF
US$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for US$120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Power Electronics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Thermal performance of power converters is a key issue for the power integration. Temperatures inside the active and passive devices can be determined using thermal models. Modelling the temperature distribution of high-frequency magnetic components is quite complex due to the diversity of their geometries and used materials. This study presents a thermal modelling method based on lumped elements thermal network model, applied to planar magnetic components made of double planar E shaped cores (EE) and planar E core combined with plate one (E/PLT). The 3D model is automatically generated from the component's geometry. The computation enables to obtain 3D temperature distribution inside windings and core of planar transformers or inductors, in steady state or in transient case. This study details the proposed modelling method as well as the automated tool including the problem definition and the solving process. The obtained temperature distributions are compared with finite-element simulation results and measurements on different planar transformers.

References

    1. 1)
      • 6. Ouyang, Z., Andersen, M.A.E.: ‘Overview of planar magnetic technology – fundamental properties’, IEEE Trans. Power Electron., 2014, 29, (9), pp. 48884900.
    2. 2)
      • 36. Mutlu, U.: ‘Analysis, design, and implementation of A 5 Kw zero voltage switching phase-shifted full-bridge Dc/Dc converter based power supply for arc welding machines’. Master thesis, Middle East Technical University, 2006.
    3. 3)
      • 34. ‘ANSYS – simulation driven product development’. Available at http://www.ansys.com, accessed 11 October 2018.
    4. 4)
      • 38. ADUM3223BRZ isolated precision half-bridge driver datasheet, Rev. J. Available at http://www.analog.com, accessed 9 August 2019.
    5. 5)
      • 7. Ngoua Teu Magambo, J.S., Bakri, R., Margueron, X., et al: ‘Planar magnetic components in more electric aircraft: review of technology and key parameters for DC–DC power electronic converter’, IEEE Trans. Transp. Electrification, 2017, 3, (4), pp. 831842.
    6. 6)
      • 28. Taylor, L., Margueron, X., Le Menach, Y., et al: ‘Numerical modelling of PCB planar inductors: impact of 3D modelling on high-frequency copper loss evaluation’, IET Power Electron., 2017, 10, (14), pp. 19661974.
    7. 7)
      • 9. Boglietti, A., Cavagnino, A., Staton, D., et al: ‘Evolution and modern approaches for thermal analysis of electrical machines’, IEEE Trans. Ind. Electron., 2009, 56, (3), pp. 871882.
    8. 8)
      • 40. Tektronix 4000 series digital phosphor oscilloscopes user manual, 071-2121-00. Available at http://www.tektronix.com, accessed 9 August 2019.
    9. 9)
      • 19. Smit, M.C., Ferreira, J.A., van Wyk, J.D., et al: ‘Technology for manufacture of integrated planar LC structures for power electronic applications’. Proc. 1993 Fifth European Conf. on Power Electronics and Applications, Brighton, UK, 1993, vol. 2, pp. 173178.
    10. 10)
      • 13. Tria, L.A.R., Alam, K.S., Zhang, D., et al: ‘Comparative study of multicore planar transformers on printed circuit boards’, IET Power Electron., 2017, 10, (12), pp. 14521460.
    11. 11)
      • 33. Shafaei, R., Saket, M.A., Ordonez, M.: ‘Thermal comparison of planar versus conventional transformers used in LLC resonant converters’. Proc. 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018, pp. 50815086.
    12. 12)
      • 41. PR 50 Universal 50 MHz current probe for oscilloscopes, publication GB20601 E. Available at http://www.lem.com, accessed 9 August 2019.
    13. 13)
      • 30. Meeker, D.D.: ‘Finite element method magnetics’. Available at http://www.femm.info/wiki/HomePage/, accessed 11 October 2018.
    14. 14)
      • 29. Incropera, F.: ‘Fundamentals of heat and mass transfer’ (John Wiley and Sons, New York, 1985).
    15. 15)
      • 2. Biela, J., Badstuebner, U., Kolar, J.W.: ‘Impact of power density maximization on efficiency of DC–DC converter systems’, IEEE Trans. Power Electron., 2009, 24, (1), pp. 288300.
    16. 16)
      • 12. van den Bossche, A., Valchev, : ‘Inductors and transformers for power electronics’ (Taylor and Francis, USA, 2005).
    17. 17)
      • 31. Brittain, J.E.: ‘A Steinmetz contribution to the AC power revolution’, Proc. IEEE, 1984, 72, (2), pp. 196197.
    18. 18)
      • 22. Buccella, C., Cecati, C., de Monte, F.: ‘A computational method of temperature distribution in high frequency planar transformers’. 2011 IEEE Int. Symp. on Industrial Electronics, Gdansk, Poland, 2011, pp. 477482.
    19. 19)
      • 43. ‘Ti90, Ti95 Ti100, Ti105, Ti110, Ti125 TiR105, TiR110, TiR125 performance series thermal imagers users manual’. Available at https://www.myflukestore.com, accessed 11 October 2018.
    20. 20)
      • 25. ‘Soft ferrites and accessories data handbook 2013’. Available at https://www.ferroxcube.com/en-global/download/download/11, accessed 11 October 2018.
    21. 21)
      • 4. Guan, Y., Wang, Y., Xu, D., et al: ‘A 1 MHz half-bridge resonant DC/DC converter based on GaN FETs and planar magnetics’, IEEE Trans. Power Electron., 2017, 32, (4), pp. 28762891.
    22. 22)
      • 26. Dowell, P.L.: ‘Effects of eddy currents in transformer windings’, Proc. Inst. Electr. Eng., 1966, 113, (8), pp. 13871394.
    23. 23)
      • 18. Bakri, R., Teu, J.S.N., Margueron, X., et al: ‘Planar transformer equivalent thermal resistance variation with ambient temperature and power losses’. Proc. 2016 18th European Conf. on Power Electronics and Applications (EPE'16 ECCE Europe), Karlsruhe, Germany, 2016, pp. 19.
    24. 24)
      • 24. Shafaei, R., Ordonez, M., Saket, A.: ‘Three-dimensional frequency-dependent thermal model for planar transformers in LLC resonant converters’, IEEE Trans. Power Electron., 2019, 34, (5), pp. 46414655.
    25. 25)
      • 5. Zhang, Z., Ngo, K.D.T.: ‘Multi-megahertz quasi-square-wave flyback converter using eGaN FETs’, IET Power Electron., 2017, 10, (10), pp. 11381146.
    26. 26)
      • 39. TMS320F2833x, TMS320F2823x digital signal controllers (DSCs), SPRS439O – June 2007 – Revised April 2019. Available at http://www.ti.com, accessed 9 August 2019.
    27. 27)
      • 15. Ferroxcube soft ferrites design tool (SFDT), April 2010. Available at https://www.ferroxcube.com/en-global/design_tool/index, accessed 9 August 2019.
    28. 28)
      • 20. Lewaiter, A., Ackermann, B.: ‘A thermal model for planar transformers’. Proc. 4th IEEE Int. Conf. on Power Electronics and Drive Systems. IEEE PEDS, Denpasar, Indonesia, 2001, vol. 2, pp. 669673.
    29. 29)
      • 32. Salinas, G., Delgado, A., Oliver, J.A., et al: ‘Fast FEA thermal simulation of magnetic components by winding equivalent layers’. Proc. 2018 IEEE Energy Conversion Congress and Exposition (ECCE), Portland, OR, USA, 2018, pp. 73807385.
    30. 30)
      • 37. STP36N55M5 power MOSFET datasheet, Doc ID 022902 Rev 2 October 2012. Available at http://www.st.com, accessed 9 August 2019.
    31. 31)
      • 21. Buccella, C., Cecati, C., de Monte, F.: ‘A coupled electrothermal model for planar transformer temperature distribution computation’, IEEE Trans. Ind. Electron., 2008, 55, (10), pp. 35833590.
    32. 32)
      • 10. Puigdellivol, O., Méresse, D., Menach, Y.L., et al: ‘Thermal topology optimization of a three-layer laminated busbar for power converters’, IEEE Trans. Power Electron., 2017, 32, (6), pp. 46914699.
    33. 33)
      • 42. Differential voltage probe ST 1000-II. Available at https://www.francaise-instrumentation.fr/sondes-differentielles/50-sonde-differentielle-30-mhz-2-voies.html, accessed 9 August 2019.
    34. 34)
      • 1. Kolar, J.W., Drofenik, U., Biela, J., et al: ‘PWM converter power density barriers’. Proc. 2007 Power Conversion Conf., Nagoya, Japan, 2007, pp. 929.
    35. 35)
      • 11. McLyman, C.W.T.: ‘Transformer and inductor design handbook’ (CRC Press, USA, 2011, 4th edn.).
    36. 36)
      • 27. Robert, F., Mathys, P., Schauwers, J.: ‘Ohmic losses calculation in SMPS transformers: numerical study of Dowell's approach accuracy’, IEEE Trans. Magn., 1998, 34, (4), pp. 12551257.
    37. 37)
      • 35. Keradec, J.: ‘Validating the power loss model of a transformer by measurement – validation is key’, IEEE Ind. Appl. Mag., 2007, 13, (4), pp. 4248.
    38. 38)
      • 14. ‘Design of planar power transformers’, 2000. Available at http://ferroxcube.home.pl/appl/info/plandesi.pdf, accessed 11 October 2018.
    39. 39)
      • 23. Bernardoni, M., Delmonte, N., Cova, P., et al: ‘Thermal modeling of planar transformer for switching power converters’, Microelectron. Reliab., 2010, 50, (9), pp. 17781782.
    40. 40)
      • 17. ‘Magnetics designer – personal computer circuit design tools’, 2013. Available at http://www.intusoft.com/lit/Magdes.pdf, accessed 11 October 2018.
    41. 41)
      • 16. Muldoon, W.J.: ‘Analytical design optimization of electronic power transformers’. Proc. IEEE Power Electronics Specialists Conf., Syracuse, NY, USA, 1978, pp. 216225.
    42. 42)
      • 3. van Wyk, J.D., Lee, F.C.: ‘On a future for power electronics’, IEEE J. Emerging Sel. Topics Power Electron., 2013, 1, (2), pp. 5972.
    43. 43)
      • 8. Saket, M.A., Shafiei, N., Ordonez, M.: ‘LLC converters with planar transformers: issues and mitigation’, IEEE Trans. Power Electron., 2017, 32, (6), pp. 45244542.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-pel.2019.0332
Loading

Related content

content/journals/10.1049/iet-pel.2019.0332
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address